

Automatic Music Transcription

Zhiyao Duan ¹ and Emmanouil Benetos ²

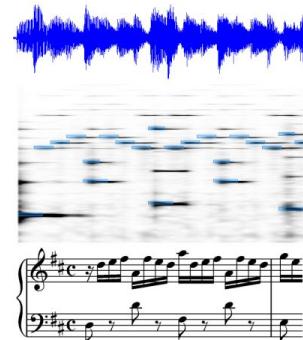
¹ Department of Electrical and Computer Engineering,
University of Rochester

² Centre for Digital Music, Queen Mary University of London

Tutorial at ISMIR 2015
Malaga, Spain
October 26, 2015

Tutorial Outline

1. Introduction
2. How do humans transcribe music?
3. State-of-the-art research on AMT
(1st part)
- Break
4. State-of-the-art research on AMT
(2nd part)
5. Datasets and evaluation measures
5. Relations and applications to other problems
6. Software & Demo
7. Challenges and research directions
8. Conclusions + Q&A



Tutorial Website:

<http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/>

2

Introduction

3

AMT - Introduction (1)

Automatic music transcription (AMT): the process of converting an acoustic musical signal into some form of music notation (e.g. staff notation, MIDI file, piano-roll,...)

Music audio

Mid-level & Parametric representation

- Pitch, onset, offset, stream, loudness
- Uses audio time (ms)

Music notation

- Note name, key, rhythm, instrument
- Uses score time (beat)

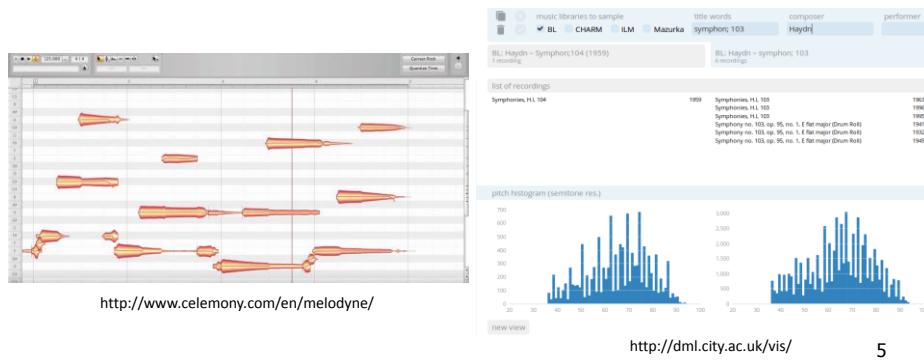
4

AMT - Introduction (2)

Fundamental (and open) problem in music information research

Applications:

- Search/annotation of musical information
- Interactive music systems
- Systematic/computational musicology



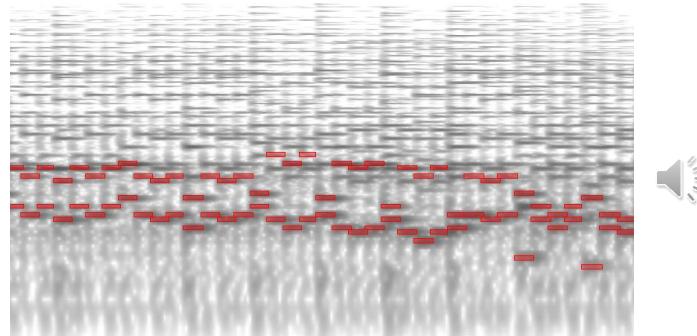
AMT - Introduction (3)

Subtasks:

- Pitch detection
- Onset/offset detection
- Instrument identification
- Rhythm parsing
- Identification of dynamics/expression
- Typesetting

AMT - Introduction (4)

Core problem: multi-pitch detection



7

AMT - Introduction (5)

How difficult is it?

- Let's listen to a piece and try to transcribe (hum) the different tracks

J. Brahms,
Clarinet Quintet
in B minor,
op.115. 3rd
movement

Andantino.

p semplice

senza sord.

p senza sord.

8

AMT - Introduction (6)

We humans are amazing!

- “In Rome, he (14 years old) heard Gregorio Allegri's *Miserere* once in performance in the Sistine Chapel. He wrote it out entirely from memory, only returning to correct minor errors...”

-- Gutman, Robert (2000). *Mozart: A Cultural Biography*

Wolfgang Amadeus Mozart

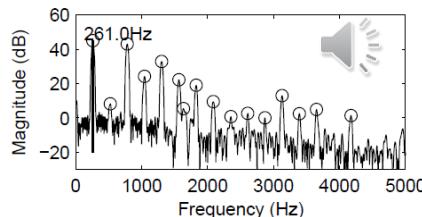
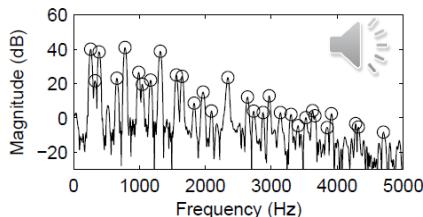
- Can we make computers compete with Mozart?

9

AMT - Introduction (7)

Challenges:

- Concurrent sound sources interfere with each other
 - Overlapping harmonics: C4 (46.7%), E4 (33.3%), G4 (60%)



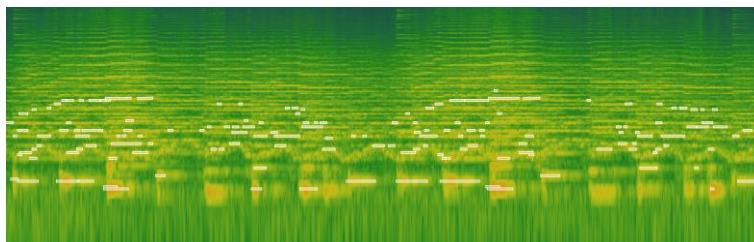
- Large variety of music
 - Music pieces: style, form, etc.
 - Instrumentation: bowed/plucked strings, winds, brass, percussive, etc.
 - Playing technique: legato, staccato, vibrato, etc.

10

AMT - Introduction (8)

State of the Art - Limitations:

- Performance clearly below of a human expert - especially for multiple-instrument music
- Lack of dataset size/diversity
- No unified methodology (as e.g., automatic speech recognition)
- Little input beyond CS/EE (musicology, music cognition, music acoustics)



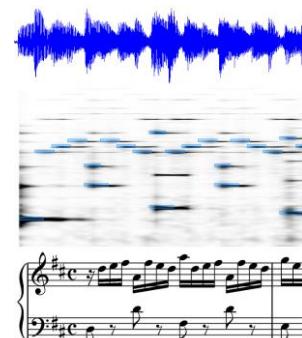
Automatic transcription of B. Smetana – Má vlast (Vltava)

11

Tutorial Focus/Objectives

- Focusing (mostly) on **polyphonic** music transcription
- Most work on **Western tonal** music!
We'll try to go beyond that.
- Presenting an overview of **representative** AMT research (+ related problems)
- Discussion on limitations, challenges, and future directions
- Resources: bibliography, datasets, code, demos
- Tutorial website:

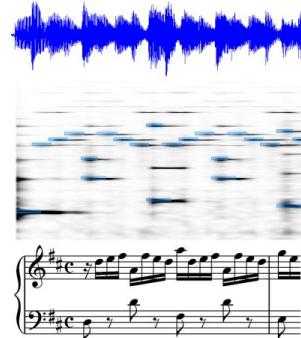
<http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/>



12

Tutorial Outline

1. Introduction
2. How do humans transcribe music?
3. State-of-the-art research on AMT
(1st part)
Break
4. State-of-the-art research on AMT
(2nd part)
5. Datasets and evaluation measures
5. Relations and applications to other problems
6. Software & Demo
7. Challenges and research directions
8. Conclusions + Q&A



Tutorial Website:

<http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/>

13

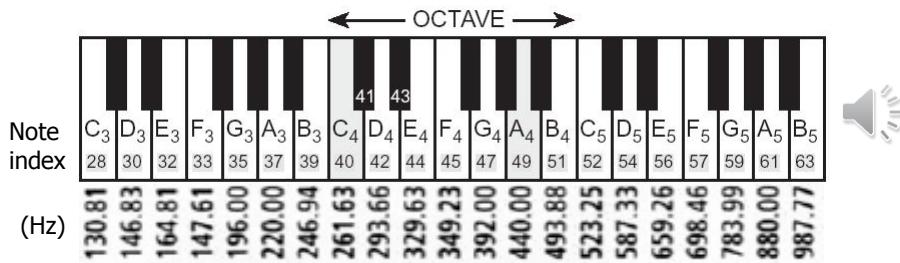
How do humans transcribe music?

14

Pitch Perception (1)

Pitch:

- That attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high (ANSI)
- (Operational) A sound has a certain pitch if it can be **reliably** matched to a sine tone of a given frequency at 40 dB SPL
- People hear pitch in a logarithmic scale



15

Pitch Perception (2)

Fundamental frequency (F0): is defined as the reciprocal of the period of a periodic signal.

Properties of pitch perception [de Cheveigné, 2006; Houtsma, 1995]:

- Range:** Pitch may be salient as long as the F0 is within about 30Hz-5kHz
- Missing fundamental:** the fundamental frequency need not be present in for a pitch to be perceived
- Harmonics:** For a sound with harmonic partials to be heard as a musical tone, its spectrum must include at least 3 successive harmonics of a common frequency

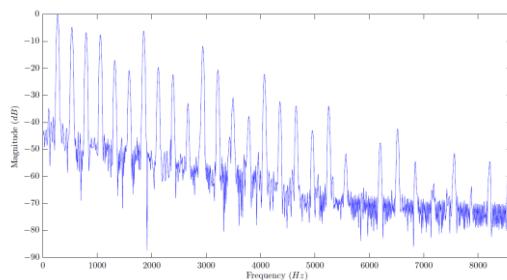
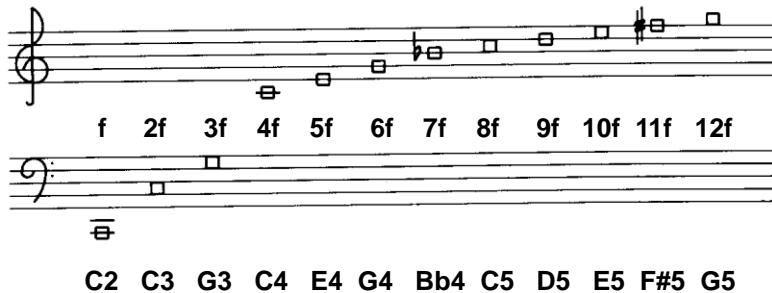


Figure:
spectrum of a C4 piano note. The fundamental is located at 261.6Hz.

16

Pitch Perception (3)

- Harmonics make tones more pleasant, but may confuse pitch perception, especially in polyphonic settings (octave/harmonic errors)



17

Pitch Perception (4)

Relative pitch: Ability to recognise and reproduce frequency ratios

Absolute pitch: Identifying pitch on an absolute nominal scale without explicit external reference

Pitch perception theories have informed the creation of AMT systems.

Modern theories:

- Pattern matching [de Boer, 1956; Wightman, 1973; Terhardt, 1974]
- Autocorrelation model [Licklider, 1951; Meddis & Hewitt, 1991; de Cheveigné, 1998]

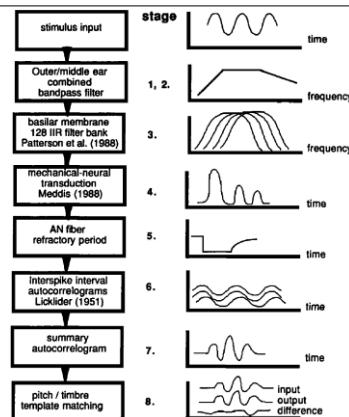


Figure from Meddis & Hewitt, 1991

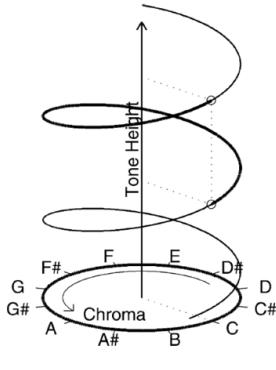
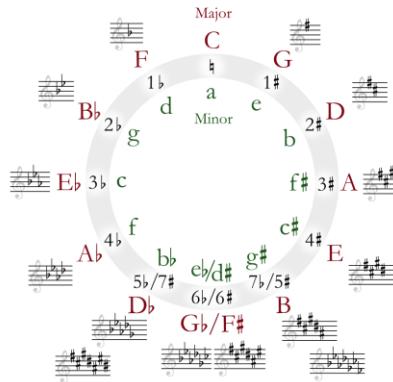
18

Pitch Perception (5)

Pitch is not a one-dimensional entity! (low/high)

Multidimensional aspects of pitch:

- Octave similarity – helix representation [Revesz, 1954]
- Pitch distance – circle of fifths representation [Shepard, 1982]



Human Transcription (1)

- Called **musical dictation** in ear training pedagogy
- Definition:** a skill by which musicians learn to identify, solely by hearing, pitches, intervals, melody, chords, rhythms, and other elements of music.
- Required in all college-level music curriculums; general expectation after 4-5 semesters' training:

“they can transcribe an excerpt of a quartet (e.g. four measures) with quite complex harmonies, after listening to it four or five times”

---- Temperley, 2013

Listening Drill - 2

Listen carefully, and determine whether you heard a) or b). Each example will be played three times.

Name _____

source: <http://www.sheetmusic1.com/ear.training.html>

Human Transcription (2)

- For accurate transcription, a great deal of practice is often necessary!
- How trained musicians transcribe music [Hainsworth03]:
 - Some use a transcription aid: musical instrument, tape recorder, software
 - Faithful transcription vs. reduction/arrangement
 - Implicitly: style detection, instrument identification, beat tracking
 - Process:
 1. Rough sketch of the piece
 2. Chord scheme / bass line
 3. Melody + counter-melodies

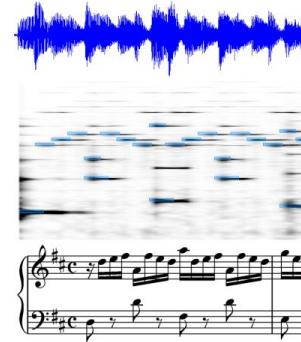
21

State-of-the-art research in AMT

22

State-of-the-art Outline

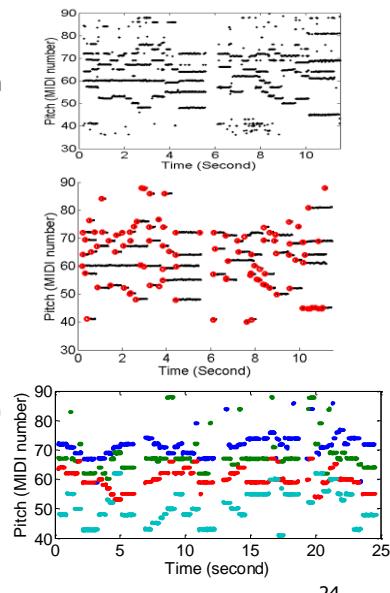
1. Multi-pitch analysis
 - A. Frame-level
 - B. Note-level
 - C. Stream-level
2. Percussive instruments transcription
3. Towards a complete music notation



23

State of the Art of Multi-pitch Analysis

- Frame-level (multi-pitch estimation)
 - Estimate **pitches and polyphony** in each frame
 - Many methods
- Note-level (note tracking)
 - Estimate **pitch, onset, offset** of notes
 - Fewer methods
- Stream-level (multi-pitch streaming)
 - **Stream** pitches by sources
 - Very few methods



24

How difficult is it?

- Let's do a test!
 - Q1: How many pitches are there?
 - Q2: What are their pitches?
 - Q3: Can you find a pitch in Chord 1 and a pitch in Chord 2 that are played by the same instrument?

Chord 1	Chord 2
2	3
C4/G4	C4/F4/A4
Clarinet Horn	Clarinet A4 Viola F4 Horn C4

25

Frame-level: Multi-pitch Estimation

Categorization of methods

- Domain of operation: time, frequency, hybrid
- Representation:
 - Time domain: raw waveform, auditory filterbank
 - Frequency domain: STFT spectrum, CQT spectrum, ERB filterbank, specmurt, spectral peaks
- Core algorithm: rule-based, signal processing approaches, maximum likelihood, Bayesian, spectrogram decomposition, sparse coding, classification-based, etc.
- Iterative vs. joint estimation of pitches

26

Time Domain Methods

- Key idea
 - Harmonic sounds are periodic
 - Use autocorrelation function (ACF) to find signal period

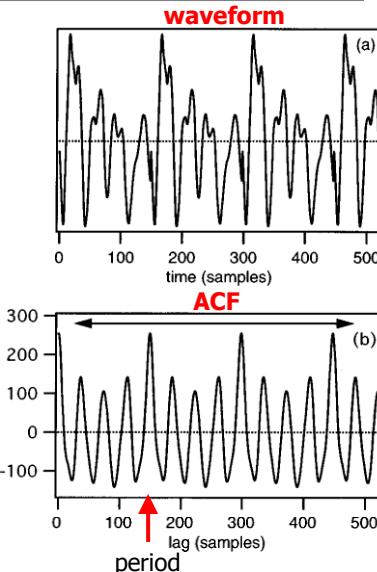
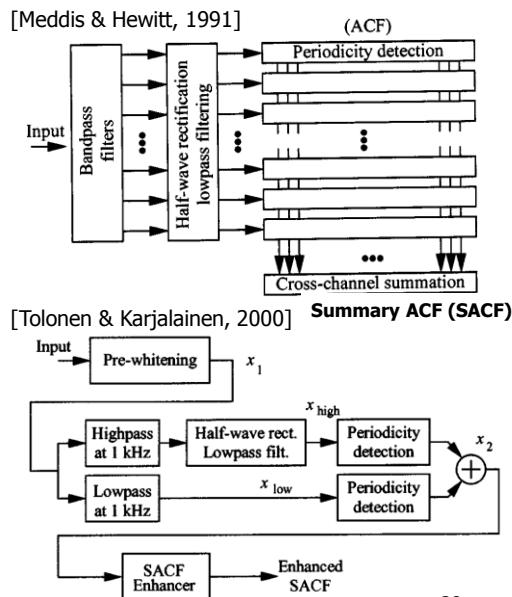


Figure from [de Cheveigné & Kawahara, 2002]

27

Time Domain - Autocorrelation

- Detailed simulation of human auditory system
 - Outer- and middle-ear freq. attenuation effect
 - ~100 channels with critical bandwidth
 - Inner hair cell response
- Simplified version
 - Only 2 channels
 - Enhanced SACF: remove SACF peaks due to integer multiples of periods



Figures from [Tolonen & Karjalainen, 2000]

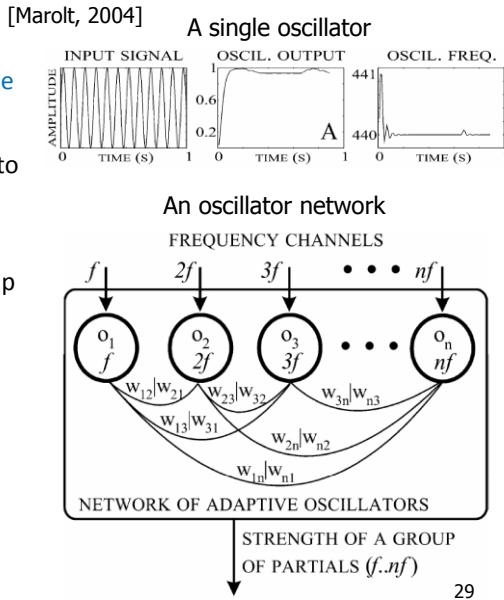
28

Time Domain – Adaptive Oscillators

- Oscillator
 - Parameters: *freq.* and *phase*
- Adaptive oscillator
 - Adapts its freq. and phase to input signal
- Oscillator networks
 - Each network tracks a group of harmonically related partials
 - In total 88 networks for 88 pitches

Pros: good performance on piano

Cons: may not deal well with frequency deviation and modulations



29

Time Domain – Probabilistic Modeling (1)

- Harmonic model [Walmsley et al., 1999]

$$y_t = \left\{ \sum_{k=1}^K \sum_{m=1}^{M_k} \alpha_m \cos(m\omega_{0,k} t) + \beta_m \sin(m\omega_{0,k} t) \right\} + v_t$$

Annotations for the equation:

- #notes (points to K)
- #harmonics (points to M_k)
- Harmonic amplitude and phase (points to α_m and β_m)
- F0 (points to $\omega_{0,k}$)
- Gaussian noise (i.i.d.) (points to v_t)

- Parameters: $K, \{M_k\}, \{\alpha_m\}, \{\beta_m\}, \{\omega_{0,k}\}$, variance of v_t
- Impose priors on parameters
- Bayesian inference by Markov Chain Monte Carlo (MCMC)

Pros: rigorous mathematical model

Cons: computationally expensive; purely harmonic model

30

Time Domain – Probabilistic Modeling (2)

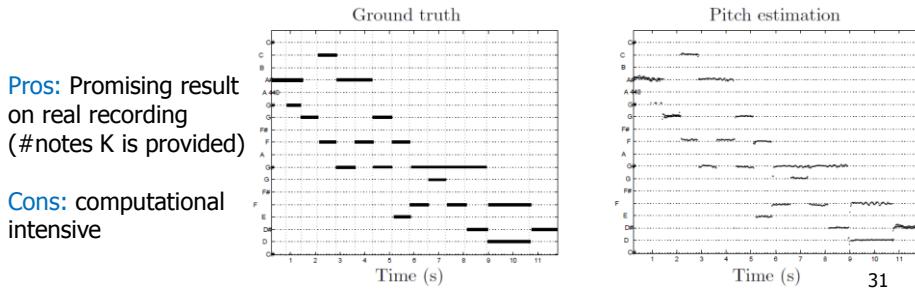
- A more detailed model [Davy & Godsill, 2003]

$$y_t = \left\{ \sum_{k=1}^K \sum_{m=1}^{M_k} \sum_{i=1}^I a_{k,m,i} \phi_{i,t} \cos [(m + \delta_{k,m}) \omega_{0,k} t] + b_{k,m,i} \phi_{i,t} \sin [(m + \delta_{k,m}) \omega_{0,k} t] \right\} + v_t$$

Allows harmonics to change amplitude within a note

Deals with detuning

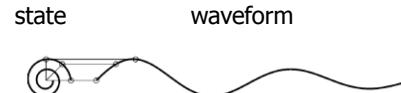
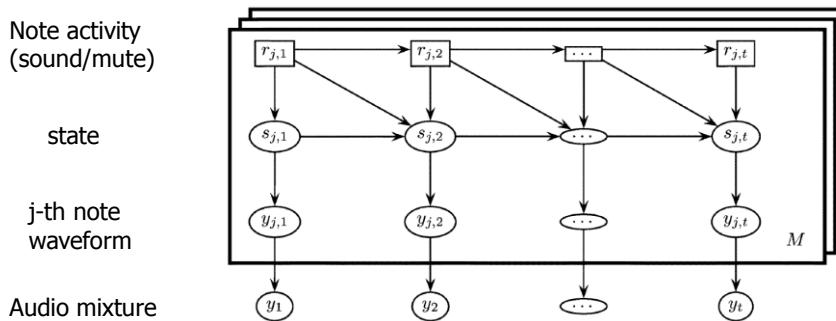
- Auto-regressive model for v_t .



Time Domain – Probabilistic Modeling (3)

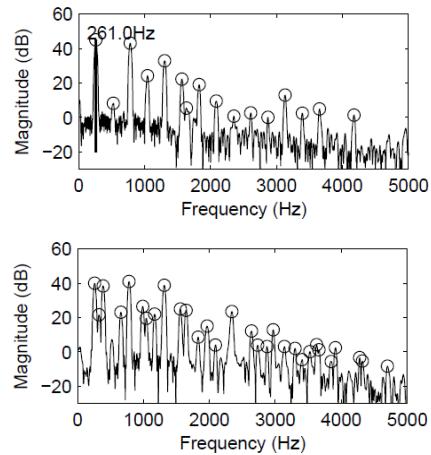
- Damped note model

[Cemgil et al., 2006]

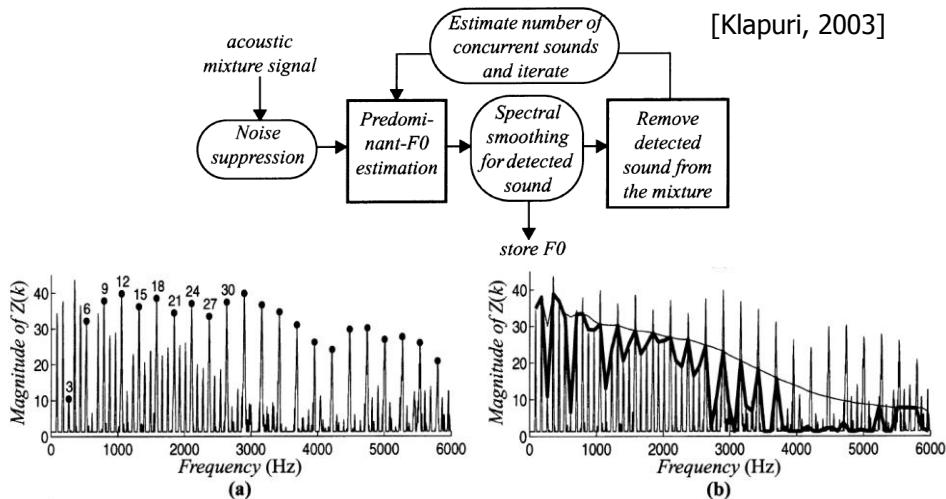


Frequency Domain Methods

- Key idea
 - Each pitch has a set of harmonics
 - Recognize the harmonic patterns
- Difficulty
 - Tend to have **harmonic errors**
 - Harmonic amplitude varies
 - Overlapping harmonics



Iterative Spectral Subtraction



Pros: good performance, simple, fast

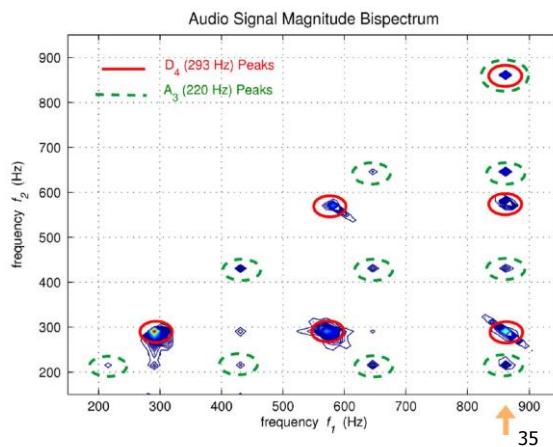
Cons: hard to subtract the appropriate amount of energy

Iterative Bispectral Subtraction

- Bispectrum [Argenti et al., 2011]
 - 2-D Fourier transform of the 3rd order cumulant of the signal, or equivalently, $B_x(f_1, f_2) = X(f_1)X(f_2)X^*(f_1 + f_2)$
 - Account for nonlinear partial interactions

Algorithm

1. Calculate Constant Q bispectrum of signal
2. Perform 2-d correlation between bispectra of signal and a template
3. Highest correlation gives a pitch estimate
4. Cancel entries of signal bispectrum corresponding to harmonics of the pitch
5. Repeat 2-4.



Spectral Peak Modeling

- Peak picking
- Choose pitch candidates
 - Around first several peaks and their integer fractions
- Calculate salience (or likelihood) of *each pitch* or each *combination of pitches*
- Choose the best ones

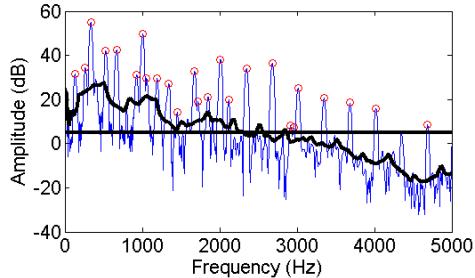


Figure from [Duan et al., 2010]

- **Pros:** intuitive; works well; more compact representation of audio
- **Cons:** sensitive to peak detection; has difficulty in dealing with sources with different loudness

Spectral Peak Modeling – Rule-based

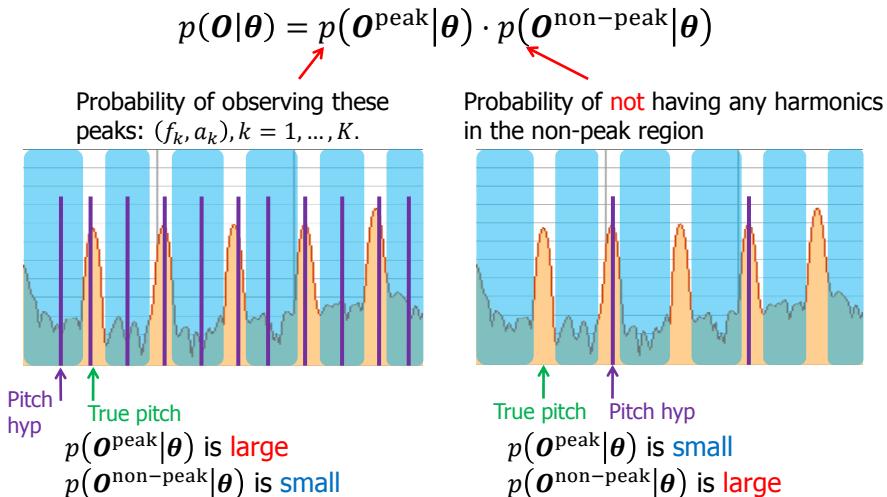
- Rule-based approaches
 - [Pertusa & Iñesta, 2008]
 - Salience(pitch) = Loudness(partials) * Smoothness(partials)
 - Salience(pitch combination) = Sum(saliences of pitches)
 - [Yeh et al., 2010]
 - Salience of a pitch depends on harmonicity, smoothness, and synchronicity of its partials
- Pros: fast, work well
- Cons: rule-based methods may be hard to adapt to other instruments

37

Spectral Peak Modeling – Maximum Likelihood (1)

- [Duan et al., 2010]

Pros: balances harmonic and subharmonic errors
 Cons: soft notes may be masked by others



38

Spectral Peak Modeling – Maximum Likelihood (2)

- [Emiya et al., 2007]

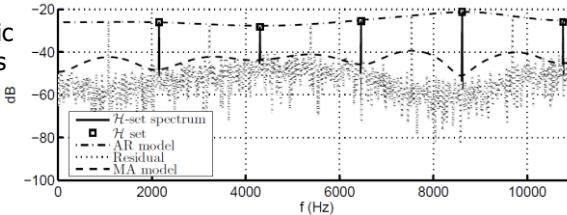
- Auto-Regressive (AR) model for **harmonics of pitches**
- Moving-Average (MA) model for **residual**

Both tend to be smooth!

Pros: balances harmonic and subharmonic errors

Harmonic error

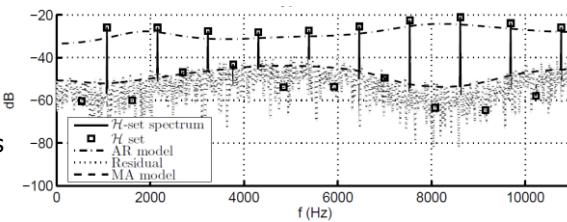
- AR model fits well
- MA model doesn't



Subharmonic error

- MA model fits well
- AR model doesn't

Cons: the assumptions on spectral smoothness is not always true



39

Spectral Peak Modeling – Maximum Likelihood (3)

- [Peeling & Godsill, 2011]

- Assumes that the **number of partials** of the i -th note is a non-homogenous Poisson process on the frequency axis with a rate of $\lambda_i(f)$, which is the **expected partial density** at frequency f
- Assumes that concurrent notes are independent
- So the **number of partials of all notes** is a superposition of multiple independent Poisson processes, hence another Poisson process with rate $\lambda(f) = \sum_i \lambda_i(f)$
- Models $\lambda_i(f)$ with a GMM, with Gaussians centered at harmonics of the i -th note

Likelihood function

$$p(f_1, \dots, f_N, N | \lambda(f)) = \exp \left(- \int_0^{F_{\max}} \lambda(f) df \right) \prod_{n=1}^N \lambda(f_n)$$

Frequency and number of detected partials (peaks)

Rate function, dependent on pitch hypotheses

Pros: mathematically interesting
Cons: strong assumption

40

Full Spectrum Modeling – Probabilistic (1)

- Key idea: view spectra as (parametric) probabilistic distributions

- Each note = tied- Gaussian Mixture Model (tied-GMM)

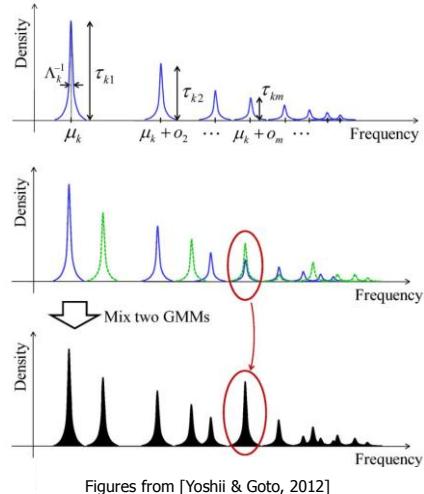
$$\mathcal{M}_k(\mathbf{x}) = \sum_{m=1}^M \tau_{km} \mathcal{N}(\mathbf{x} | \mu_k + \mathbf{o}_m, \Lambda_k^{-1})$$

- Signal = Mixture of GMMs

$$\mathcal{M}_d(\mathbf{x}) = \sum_{k=1}^K \pi_{dk} \mathcal{M}_k(\mathbf{x})$$

Pros: flexible to incorporate priors on parameters

Cons: doesn't model inharmonic and transients; many parameters to optimize



41

Full Spectrum Modeling – Probabilistic (2)

- PreFFEst [Goto, 2004]
 - Gaussian models are given; estimate Gaussian mixing weights and note mixing weights
- Harmonic Clustering (HC) [Kameoka et al., 2004]
 - Estimate all parameters
 - Use Akaike Information Criterion (AIC) to decide number of notes
- Infinite Latent Harmonic Allocation (iLHA) [Yoshii & Goto, 2012]
 - Model allows arbitrary number of Gaussians and notes
 - Automatically decide their numbers using non-parametric Bayesian inference

42

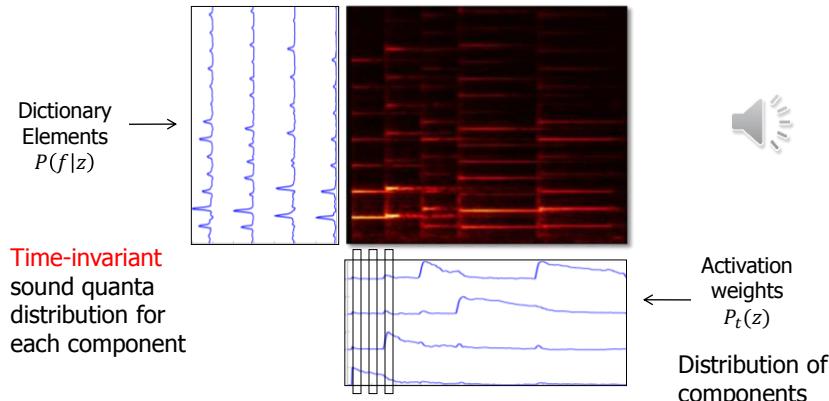
Full Spectrum Modeling – Probabilistic (3)

Non-parametric model

[Smaragdis & Raj, 2006]

- Probabilistic Latent Component Analysis (PLCA)

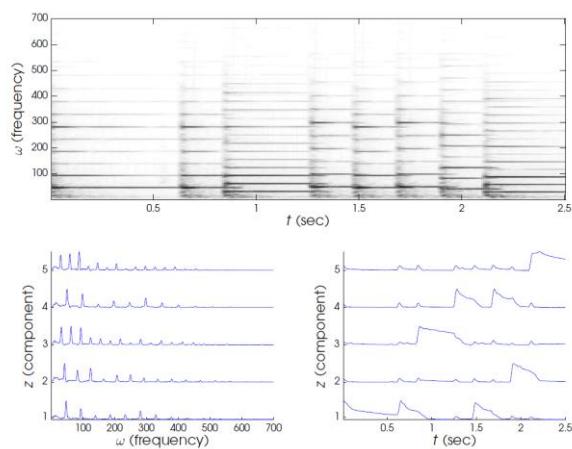
$$\text{Sound quanta distribution at } t \rightarrow P_t(f) \approx \sum_z P(f|z)P_t(z)$$



43

Spectrogram Decomposition (1)

- **Non-negative Matrix Factorization (NMF)** applied to magnitude spectrograms [Smaragdis03]
- Related methods: **Probabilistic Latent Component Analysis (PLCA), sparse coding**
- Dictionary can be fixed or adaptive



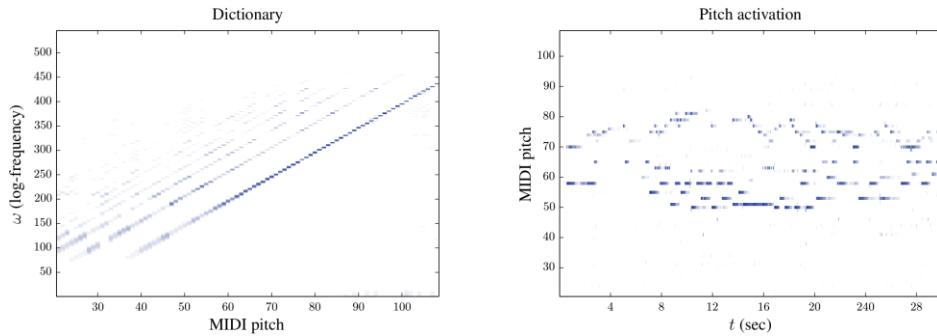
Spectrogram Decomposition (2)

NMF model: Given a non-negative matrix V find non-negative matrix factors W and H such that:

$$V \approx WH$$

AMT Models with Fixed Templates

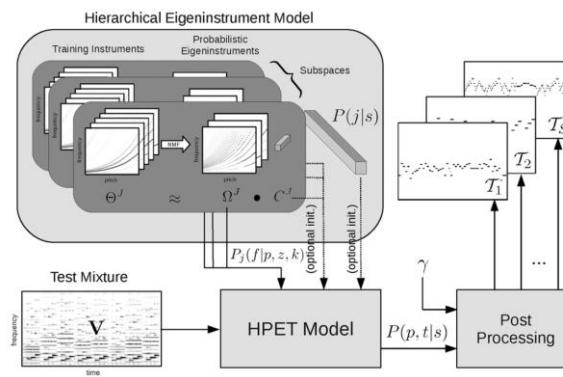
- W : note dictionary; H : pitch activation
- Keep W fixed, only estimate H (e.g. [Dessein10; Ari12])



Spectrogram Decomposition (3)

Fixed Templates (continued)

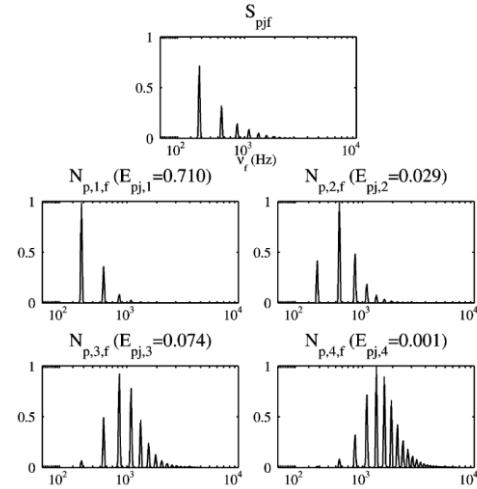
- PLCA + eigeninstruments [Grindlay11]
- PLCA + sparsity/continuity priors [Bay12]
- **Pros:** dictionary incorporates prior knowledge on instrument model + acoustics, good performance in a source-dependent scenario
- **Cons:** models perform poorly if test audio doesn't match the dictionary



Spectrogram Decomposition (4)

Adaptive templates

- Bayesian NMF + harmonicity/smoothness [Bertin10]
- NMF with adaptive harmonic decomposition [Vincent10]
- PLCA with template adaptation [Benetos14]
- **Pros:** dictionary closely matches test audio, potentially improving AMT performance
- **Cons:** strong assumptions (e.g. strictly harmonic spectra, lack of transient components, relying on a good initial estimate...)

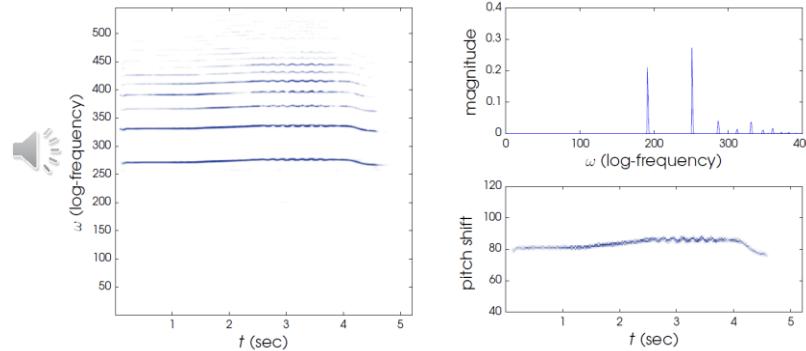


47

Spectrogram Decomposition (5)

Convulsive models (NMD, Shift-Invariant PLCA)

- SIPLCA – fixed templates [Benetos12]
- SIPLCA – adaptive templates [Fuentes13]
- **Pros:** can model tuning changes & frequency modulations
- **Cons:** computationally expensive; no improvement over linear models in some cases (e.g. tuned piano)

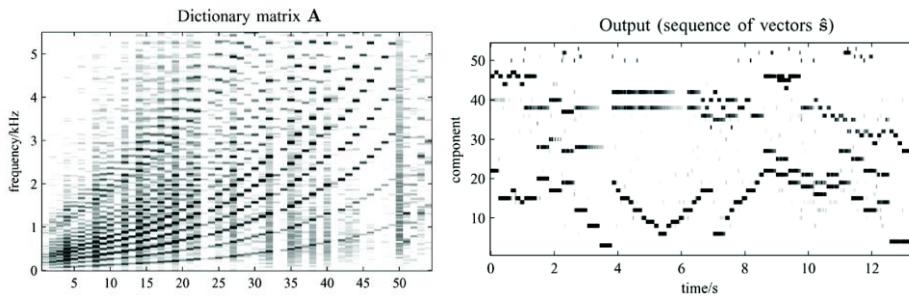


48

Spectrogram Decomposition (6)

Sparse coding

- Key concept: spectral templates are sparse; pitch activation is sparse for each time frame
- Sparse coding [Abdallah06]
- Group sparsity [O'Hanlon12]
- **Pros:** handling large dictionaries, computationally efficient methods
- **Cons:** little support on incorporating prior knowledge



Classification-based Methods

- Basic idea
 - View polyphonic music transcription as **multi-label classification**
 - Each quantized pitch (e.g., MIDI number) is a class
 - Positive/negative examples: frames contain/not contain the pitch
- Pros:
 - Simple idea
 - Requires no acoustical prior knowledge
- Cons:
 - Only outputs quantized pitch
 - Requires lots of training data given the many class combinations
 - May overfit training data; hard to adapt to different datasets/instruments

Classification-based Methods (1)

[Marolt, 2004]

- 76 neural networks for piano notes (except for the lowest 12 notes)
- Input: output of partial tracking networks across multiple frames

neural network model	correct	spurious
time-delay NNs	96.8%	13.1%
Elman's NNs	95.2%	13.5%
multilayer perceptrons	96.4%	16.0%
RBF NNs	88.2%	14.6%
fuzzy-ARTMAP	84.1%	18.9%

- Combined with onset detection modules to achieve note-level transcription → SONIC

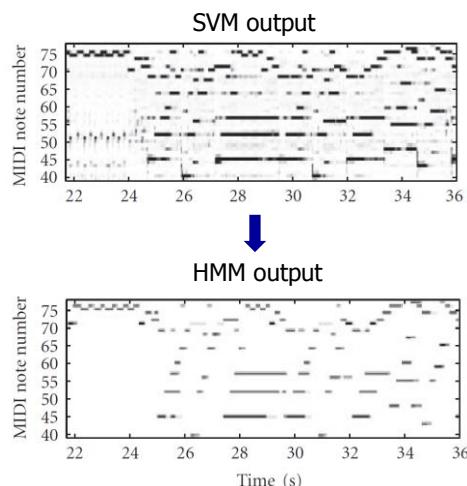
51

Classification-based Methods (2)

[Poliner & Ellis, 2007]

- 87 independent one-vs-all SVMs for piano (except for the highest note C8)
- Trained on MIDI-synthesized piano performances
- Features: magnitude spectrum within

$$\begin{cases} 0-2 \text{ kHz, for notes } \leq B5 \text{ (988Hz)} \\ 1-3 \text{ kHz, for } C6 \leq \text{notes} \leq B6 \\ 2-4 \text{ kHz, for } \geq C7 \text{ (2093Hz)} \end{cases}$$
- HMM smoothing for each class independently

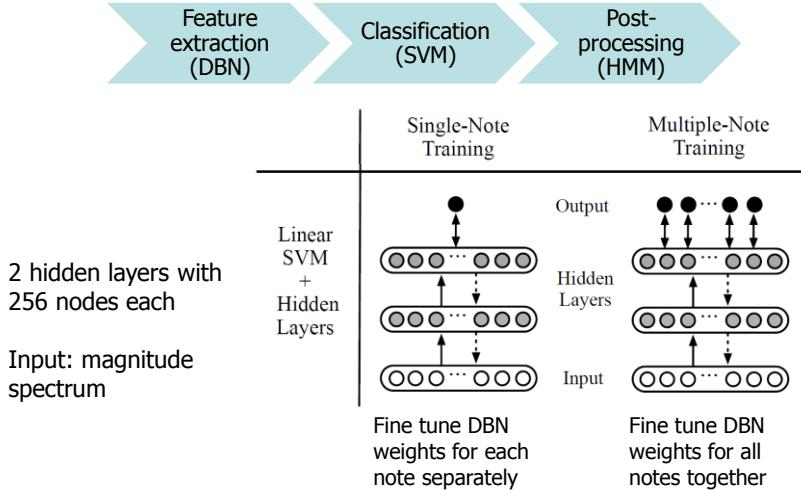


52

Classification-based Methods (3)

[Nam et al., 2011]

- Automatic feature learning by deep belief network (DBN)

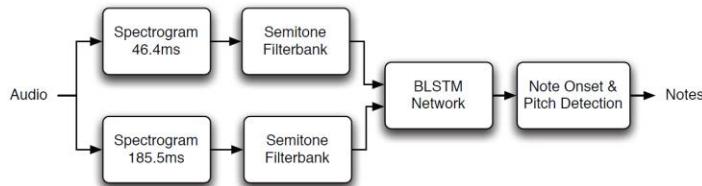


53

Classification-based Methods (4)

[Böck & Schedl, 2012] for piano transcription

- Bidirectional long short-term memory (BLSTM) network
 - Input layer: spectrum and its first-order time difference
 - 3 bidirectional hidden layers, 88 LSTM units each
 - 88 units in the regression output layer
 - Thresholding and pick picking for onset detection



- Pros: output notes jointly

54

Classification-based Methods (5)

[Raphael, 2002] for piano transcription

- Hidden Markov model (HMM)
 - States: note combinations
 - Observations: spectral features (energy, spectral flux, mean and variance of frequency distribution in each frequency band)
- Training: unsupervised training using piano audio and non-aligned MIDI scores (Baum-Welch algorithm)
 - Initialize states using score
 - Iteratively adjust model parameters and states
- Recognition: state space is huge, even after some pruning!
 - Restrict state space by multi-pitch estimation using observation model
 - Viterbi decoding

Pros: captures note transitions

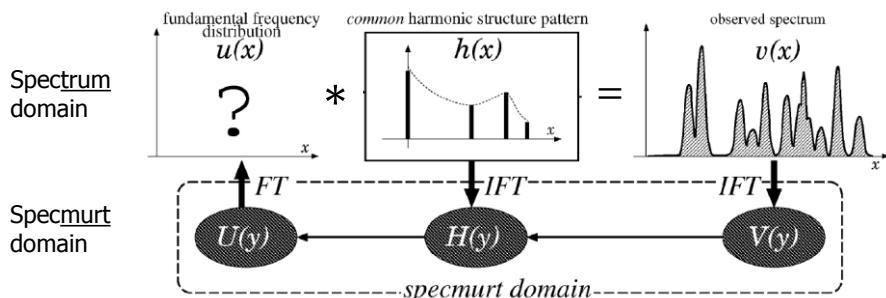
Cons: computationally expensive

55

Other Interesting Approaches

Specmurt Analysis: IFT of log-freq power spectrum [Saito et al., 2008]

- Assumes a common harmonic structure of all notes
- Iterative estimation of $u(x)$ and $h(x)$

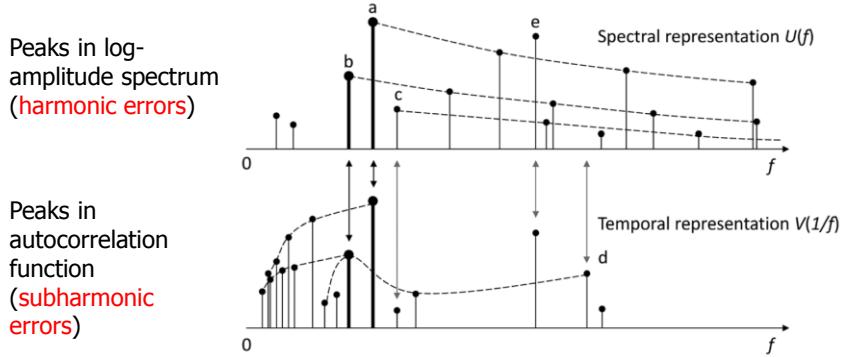


- Harmonic structure is shared by all notes **in the same frame**, but not necessarily in **different frames**, in contrast to many other methods e.g., NMF methods

56

Other Interesting Approaches

- Combining spectral and temporal representations [Su & Yang, 2015]

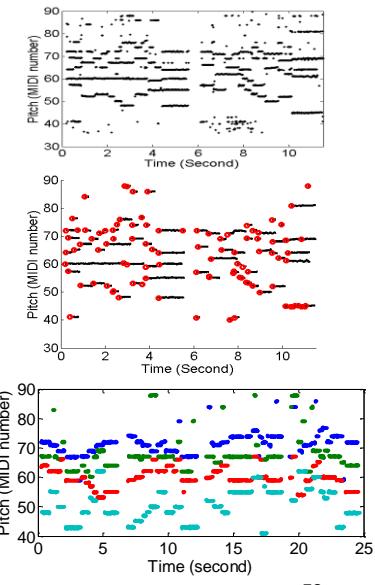


- Rules are designed to find F0s that have a prominent **harmonic series** in $U(f)$ and a prominent **subharmonic series** in $V(1/f)$

57

State of the Art

- Frame-level (multi-pitch estimation)
 - Estimate **pitches and polyphony** in each frame
 - Many methods
- Note-level (note tracking)
 - Estimate **pitch, onset, offset** of notes
 - Fewer methods
- Stream-level (multi-pitch streaming)
 - Stream** pitches by sources
 - Very few methods



58

Note Tracking

- Onset detection followed by multi-pitch estimation between onsets
 - [Marolt, 2004; Emiya et al., 2010; Grosche et al., 2012; O’Hanlon et al., 2012; Cogliati & Duan, 2015a]
 - Can be sensitive to onset detection accuracy
- As post-processing of frame-level pitch estimates
 - Form notes independently by connecting nearby pitches
 - Ignores interactions between simultaneous pitches
 - Consider interactions between simultaneous pitches
- Directly from audio

59

Frame Level → Note Level (1)

- Based on pitch salience/likelihood/activations
 - **Thresholding, filling, pruning:** [Bertin et al., 2010; Dessein et al., 2010; Carabias-Orti et al., 2011; Grindlay & Ellis, 2011; Böck & Schedl, 2012; Fuentes et al., 2013; Weninger et al., 2013]
 - **Median filtering:** [Su & Yang, 2015]

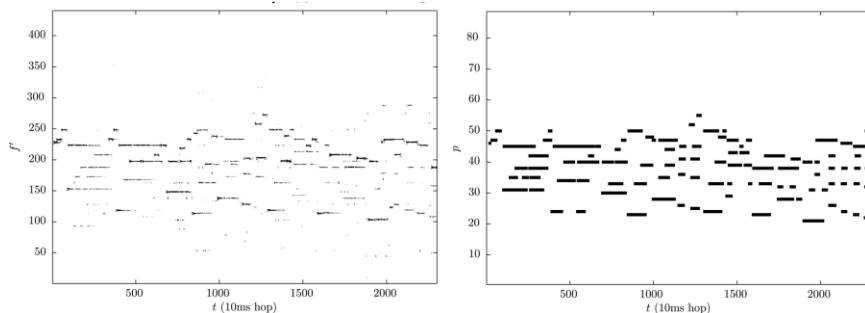
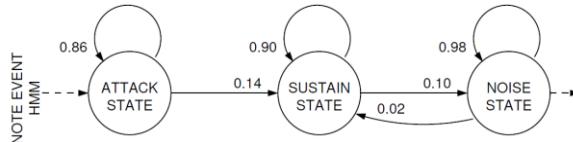


Figure from [Benetos & Dixon, 2013]

60

Frame Level → Note Level (2)

- Based on pitch salience/likelihood/activations
 - HMM smoothing: [Ryynanen & Klapuri, 2005]
 - Model each note with a **note event HMM** (3 states)
 - Observation: pitch deviation, pitch salience, onset strength



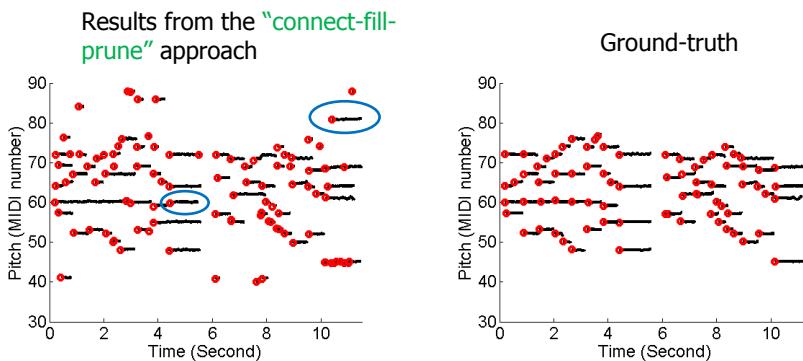
- Model silence with a **silence HMM** (1 state)
- Model transition between notes $\leftarrow\rightarrow$ notes and notes $\leftarrow\rightarrow$ silence with a **musicological HMM**
 - Note transition is key-dependent
 - Note sequence: starts with silence \rightarrow note and ends with note \rightarrow silence
 - Greedy iterative algorithm to find multiple note sequences

61

Frame Level → Note Level (3)

Problems of forming notes independently

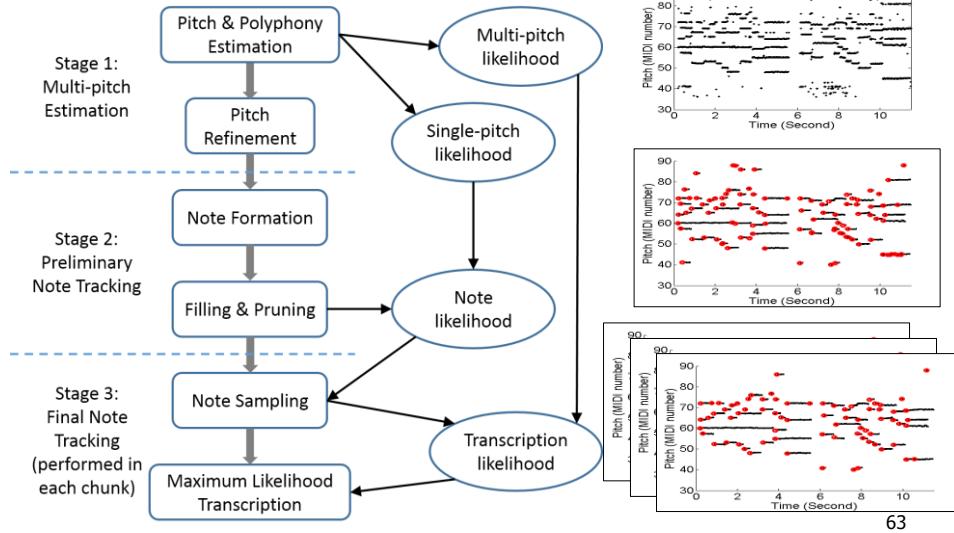
- Contains many spurious notes caused by consistent MPE errors (usually octave/harmonic errors)
- Often violates instantaneous polyphony constraints



62

Frame Level → Note Level (4)

- [Duan & Temperley, 2014] considering note interactions



63

Note Tracking from Audio Directly (1)

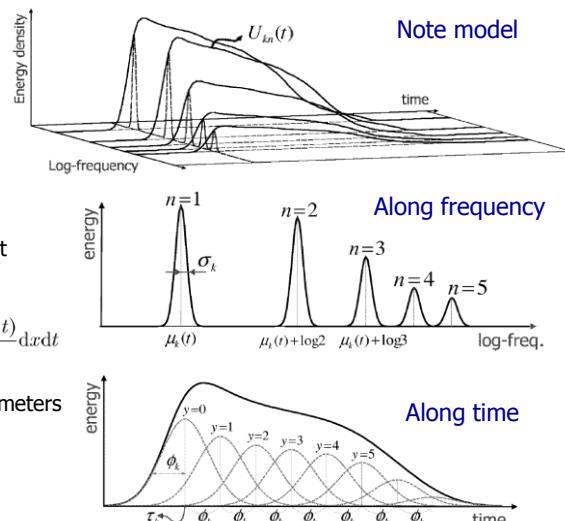
[Kameoka et al., 2007]

- Harmonic temporal structured clustering (HTC)

$$\iint_D m_k(x, t) W(x, t) \log \frac{m_k(x, t) W(x, t)}{q_k(x, t; \Theta)} dx dt$$

Mixture spectrogram Activation of sources (latent variables)

Source signal parameters



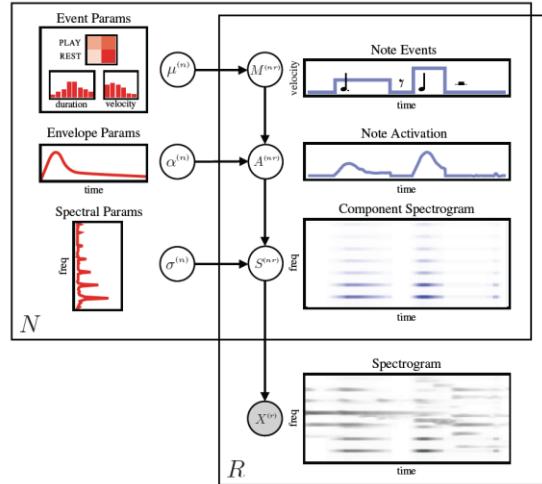
- EM algorithm

64

Note Tracking from Audio Directly (2)

[Berg-Kirkpatrick et al., 2014]

- An NMF-like approach for piano transcription
 - Each note is modeled by a **spectral profile** and an **activation envelope**
 - **Duration** and **global velocity** of activation envelope is generated from an HMM with two states (play and rest)
- Spectral profiles and activation envelopes are initialized using other pianos

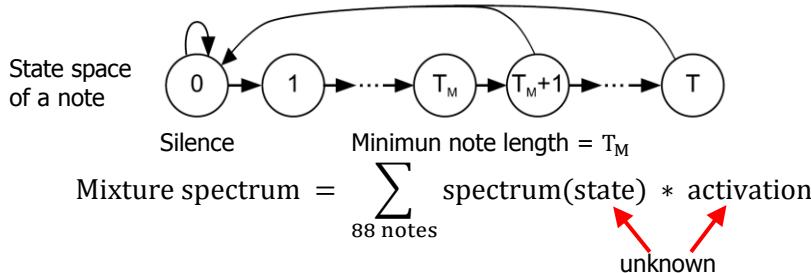


65

Note Tracking from Audio Directly (3)

[Ewert et al., 2015] for piano transcription

- Model each note as a **series** of log-freq magnitude spectra (states)



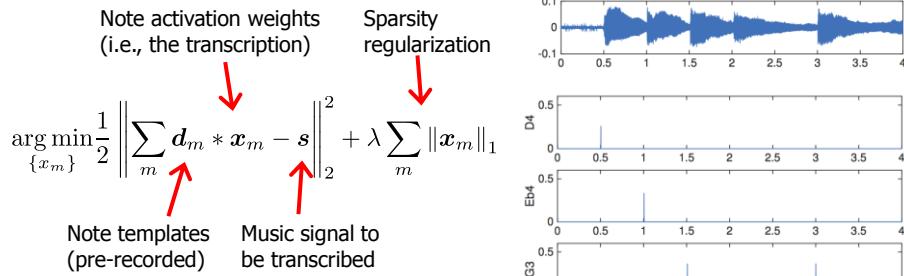
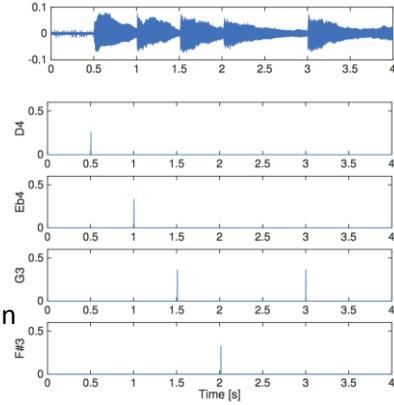
- Too many state combinations!
- Greedy algorithm
 - Step 1: Estimate all state sequences for each note independent
 - Step 2: Decompose mixture spectrum into active notes to estimate activations

66

Note Tracking from Audio Directly (4)

[Cogliati et al., 2015] for piano transcription

- Time domain convolutional sparse coding

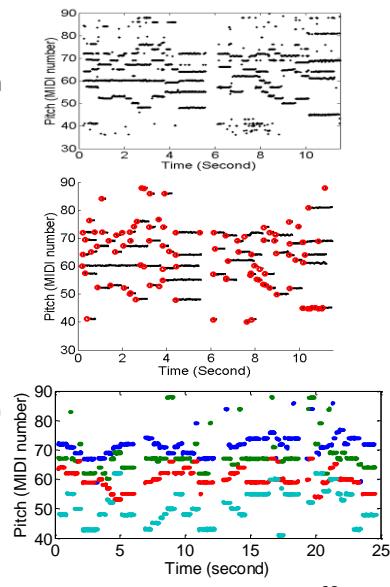


- Pros: high accuracy and onset precision
- Cons: piano/environment-dependent; doesn't estimate offset

67

State of the Art

- Frame-level (multi-pitch estimation)
 - Estimate **pitches and polyphony** in each frame
 - Many methods
- Note-level (note tracking)
 - Estimate **pitch, onset, offset** of notes
 - Fewer methods
- Stream-level (multi-pitch streaming)
 - **Stream** pitches by sources
 - Very few methods



68

Multi-pitch Streaming (Timbre Tracking)

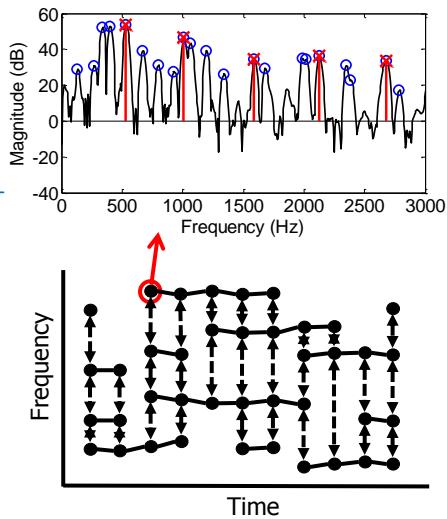
- Supervised
 - Train timbre models of sound sources
 - Apply timbre models **during pitch estimation**: [Cont et al., 2007; Bay et al., 2012; Benetos et al., 2013]
 - **Classify** estimated pitches/notes: [Wu et al. 2011]
- Supervised with timbre adaptation
 - Adapt trained timbre models to sources in mixture: [Carabias-Orti et al., 2011; Grindlay & Ellis, 2011]
- Unsupervised
 - Cluster pitch estimates according to timbre: [Duan et al., 2009, 2014; Mysore & Smaragdis, 2009; Arora & Behera, 2015]

69

Timbre Tracking – Unsupervised (1)

[Duan et al., 2009, 2014]

- Constrained clustering
 - Objective: maximize **timbre consistency** within clusters
 - Constraints based on pitch locations: **must-links** and **cannot-links**
- Timbre representation: harmonic structure feature
- Iterative algorithm: update clustering to monotonically decrease objective function and satisfy more constraints

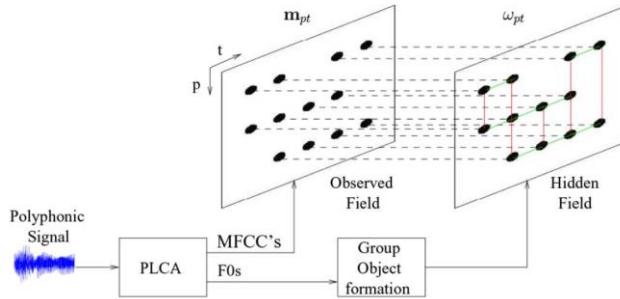


70

Timbre Tracking – Unsupervised (2)

[Arora & Behera, 2015]

- Constrained clustering
 - Objective: maximize **timbre consistency** within clusters
 - Constraints based on pitch locations: **grouping constraints** (i.e., **pitch continuity**) and **simultaneity constraints** (i.e., **simultaneous pitches**)
- Timbre representation: MFCC
- Clustering algorithm: hidden Markov random field



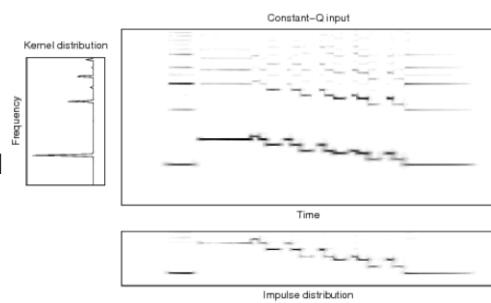
71

Timbre Tracking – Unsupervised (3)

[Mysore & Smaragdis, 2009] for relative pitch tracking

- Shift-invariant PLCA on constant-Q spectrogram
 - Assumption: instrument spectrum shape invariant to pitch
 - Constraints: 1) note activation over frequency shift is **unimodal**; 2) note activation over time is **smooth**
- Can be viewed as a **pitch clustering algorithm**

- Pros: pitch estimation and timbre tracking are performed at the same time
- Cons: does not recognize the absolute pitch



72

State-of-the-art: Transcribing Percussive Instruments



73

Percussive Instruments Transcription (1)

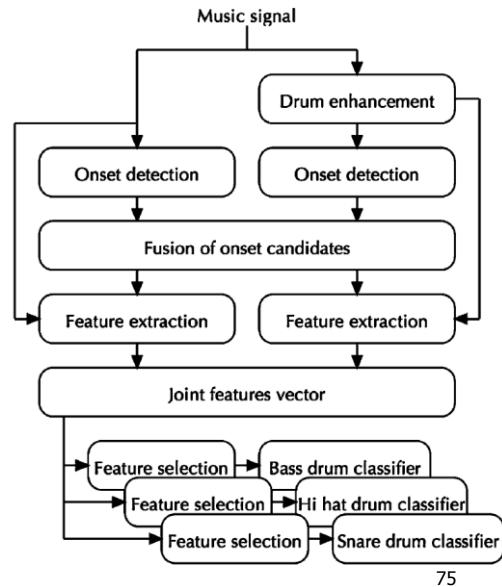
- **Core application:** transcribing drum kit sounds
- **Literature:**
 - Transcribing solo drums
 - Reducing percussive sounds for transcribing pitched sounds
 - Transcribing drums in the presence of pitched sounds
 - Transcribing drums & pitched sounds



74

Percussive Instruments Transcription (2)

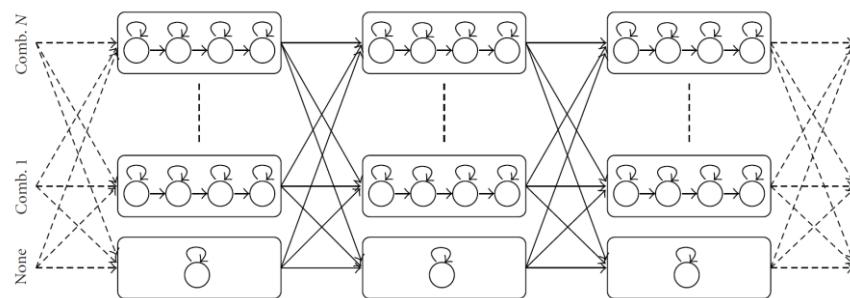
- **[Gillet and Richard, 2008]:** combines information from the original music signal and a drum track enhanced version obtained by source separation
- Large set of features (temporal, energy, spectral, perceptual...)
- Drum classification using C-support vector machines (C-SVM)
- Separation by harmonic/noise decomposition and time/frequency masking



75

Percussive Instruments Transcription (3)

- **[Paulus and Klapuri, 2009]:** using a network of connected hidden Markov models (HMMs)
- HMMs are used to perform the segmentation and recognition jointly
- Features: MFCCs + temporal derivatives

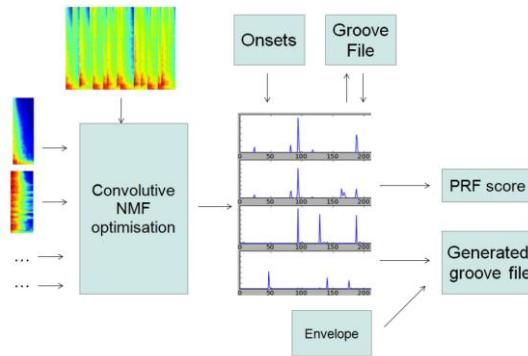


76

Percussive Instruments Transcription (4)

Spectrogram decomposition approaches

- [Lindsay-Smith et al, 2012]: convolutive NMF with time-frequency patches
- [Dittmar and Gärtner, 2014]: realtime transcription + separation with NMF and semi-adaptive bases
- [Benetos et al, 2014]: transcribing drums + pitched sounds using supervised PLCA



77

Percussive Instruments Transcription (5)

Discussion

- Good performance for drum transcription in a supervised scenario, even in real-time applications
- Temporal accuracy needed is higher compared to pitched sounds!
- Source adaptation: significant improvement, but more work needed for handling dense drum polyphony & complex patterns
- Open problem: transcribing both drums & pitched sounds (also: lack of data for evaluation!)

78

State-of-the-art: Towards a Complete Music Notation

79

Towards a complete music notation (1)

Current AMT systems can (up to a point!):

- Detect (multiple) pitches, onsets, offsets
- Identify instruments in polyphonic music
- Assign detected notes to a specific instrument

Also, some systems are able to:

- Detect & integrate rhythmic information
- Detect tuning (per piece/note)
- Extract velocity per detected note
- Transcribe fingering (for specific instruments)
- Quantise pitches over time/beats

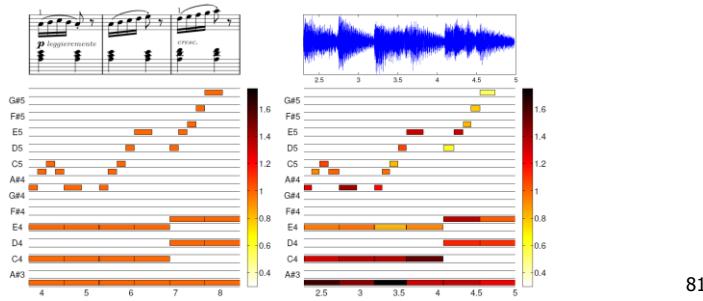
Significant work needs to be done in order to extract a complete score

80

Towards a complete music notation (2)

Dynamics

- [Ewert11]: extracting note intensities in a score-informed scenario.
Mapping with MIDI velocity information.
- [Kosta14]: Mapping between SPL and dynamic markings in the score
- Open problems:
 - Evaluation on intensity/velocity detection for AMT systems
 - Mapping between AMT intensities \rightarrow MIDI velocities \rightarrow dynamic markings
 - Datasets with audio + MIDI with velocity info + dynamic markings

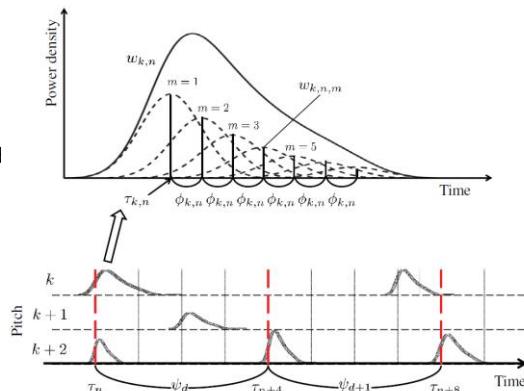


81

Towards a complete music notation (3)

Rhythm quantisation

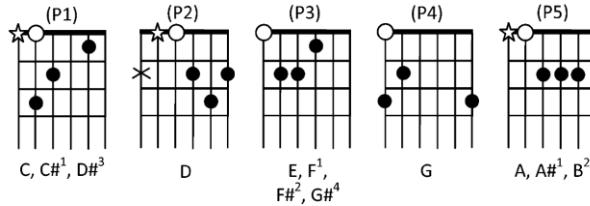
- [Collins14]: Combines multi-pitch detection with beat tracking for creating beat-quantized MIDI (goal: discovery of repeated themes).
- [Ochiai12]: Best structure modelling within an NMF-based multi-pitch detection system.
- Open problems:
 - Joint estimation of rhythmic structure and pitches
 - Exploit onset detection
 - Evaluation of beat-quantized outputs; comparison with scores?



Towards a complete music notation (4)

Fingering / string detection

- [Barbancho12]: extracting fingering configurations automatically from a recorded guitar performance (formulated as an HMM).
- [Maezawa12]: violin fingering transcription (formulated as a GMM-HMM)
- [Dittmar13]: real-time guitar string detection; feature extraction from multi-pitch pre-processing step & SVMs for classification.
- Open problems:
 - Instrument model adaptation
 - Joint estimation of fingerboard location and fingering
 - Integration into a general-purpose AMT system



83

Towards a complete music notation (5)

Computer Music Engraving / Typesetting

- Various software tools:
Sibelius, MuseScore, Finale, LilyPond, MaxScore, ScoreCloud...
- Most literature from the point of software development – little information on objective/user evaluation
- Unknown performance on engraving “noisy” scores from AMT systems

MuseScore-generated score of a MIDI transcription (MAPS_MUS-mz_333_3)

Synthesized MIDI:

84

Datasets

85

Datasets (1)

- Hard to come by!
- Annotations can be generated:
 - Automatically (e.g. from a Disklavier piano, or by single-pitch detection on multi-track recordings)
 - Semi-automatically (e.g. manual corrections from F0 tracking or alignment)
 - Manually (e.g. annotating each note, playing back the music on a digital instrument [Su15b])
- Dataset types:
 1. Polyphonic
 2. Melody/baseline
 3. Percussive
 4. Additional resources (e.g. chord annotations)

86

Datasets (2)

Polyphonic datasets – chords/isolated notes

1. UIOWA Musical Instrument Samples

<http://theremin.music.uiowa.edu/MIS.html>

- mono/stereo recordings for woodwind, brass, and string -
- instruments + percussion (isolated notes)

2. RWC Musical Instrument Sounds

<https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html>

- Isolated sounds for 50 instruments (incl. percussion)
- Covers different playing styles, dynamics, instrument models

87

Datasets (3)

Polyphonic datasets – chords/isolated notes

3. McGill University Master Samples

- 3 DVDs – cover orchestral instruments + percussion
- Available through select libraries – dataset owned by Garritan

4. MAPS samples

<http://www.tsi.telecom-paristech.fr/ao/>

- Part of MIDI-aligned Piano Sounds database (MAPS)
- Isolated notes, random chords, usual chords
- 9 different piano models (virtual pianos + Disklavier)

88

Datasets (4)

Polyphonic datasets – music pieces

1. RWC database - classical subset

<https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-c.html>

- 50 recordings (solo performances, chamber, orchestral music...)

- Non-aligned MIDI provided

- syncRWC annotations (through automatic alignment):

<https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC/>

2. RWC database – jazz subset

<https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-j.html>

- 50 recordings (different instrumentations/style variations)

- Non-aligned MIDI provided

- Automatically aligned MIDI (5 recordings incl. percussion):

<http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/37>

89

Datasets (5)

Polyphonic datasets – music pieces

3. MAPS database

<http://www.tsi.telecom-paristech.fr/ao/>

- 9 different piano models (virtual pianos + Disklavier)

- 9 x 30 complete classical pieces + MIDI ground truth

4. TRIOS dataset

<http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27>

- 5 multitrack recordings of classical/jazz trios

- MIDI ground truth provided

90

Datasets (6)

Polyphonic datasets – music pieces

5. LabROSA Automatic Piano Transcription dataset

<http://labrosa.ee.columbia.edu/projects/piano/>

- Disklavier piano + MIDI ground truth (29 pieces)

6. Bach10 dataset

<http://www.ece.rochester.edu/~zduan/resource/Resources.html>

- 10 multitrack recordings (violin, clarinet, sax, bassoon quartet)
- MIDI ground truth provided (semi-automatic)

91

Datasets (7)

Polyphonic datasets – music pieces

7. MIREX multiF0 development dataset

<http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/index.htm>

(password required – ask MIREX team!)

- One woodwind quintet multitrack recording + manual MIDI annotation

8. Score-informed piano transcription dataset

<http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/13>

- 7 Disklavier recordings that contain performance mistakes
- MIDI ground truth for recordings + “correct” performances

92

Datasets (8)

Melody/baseline datasets

1. RWC database –popular/royalty-free/genre subsets

<https://staff.aist.go.jp/m.goto/RWC-MDB/>

- manual melody annotations for popular/royalty-free subsets
- some popular/genre recordings also have aligned melody/bass annotations

93

Datasets (9)

Percussive transcription datasets

1. ENST-Drums

<http://www.tsi.telecom-paristech.fr/aoe/en/software-and-database/>
8-channel recordings, 3 drummers, 75min, audiovisual content

2. 200 Drum Machines

<http://colinraffel.com/datasets/200DrumMachines.tar.gz>
Samples collected from 200 different drum machines

94

Datasets (9)

Percussive transcription datasets

3. DREANSS dataset

<http://mtg.upf.edu/download/datasets/dreanss>

- 22 multi-track excerpts (rock, reggae, metal...) with drum annotations

4. IDMT-SMT-Drums

http://www.idmt.fraunhofer.de/en/business_units/smt/drums.html

- 95 polyphonic drum set recordings (real + synthesized)

95

Datasets (10)

Additional datasets

1. KSN database

<http://hil.t.u-tokyo.ac.jp/software/KSN/>

- Functional harmony annotations for RWC classical files

2. AIST RWC annotations

<https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/>

- Beat/chorus annotations for RWC classical/jazz recordings

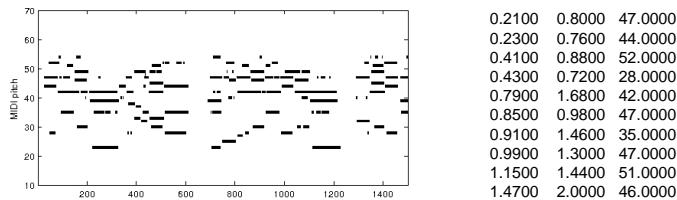
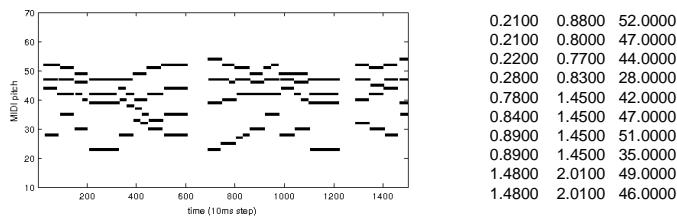
96

Evaluation Metrics

97

Evaluation Metrics (1)

- Typically comparing piano-rolls or MIDI-like representations (e.g. onset-offset-pitch)



98

Evaluation Metrics (2)

- Evaluation on:
 - Multi-pitch detection
 - Instrument assignment
(i.e. assign each detected note to an instrument source)
 - Polyphony level estimation (e.g. [Klapuri03, Duan10])
- Evaluation methodologies:
 - Frame-based
 - Note-based

99

Evaluation Metrics (3)

Frame-based evaluation

- Comparing the transcribed output and the ground truth frame-by-frame, typically at 10ms step (as in MIREX MultiFO task).
- Accuracy [Dixon, 2000]:

$$Acc_1 = \frac{\sum_n N_{tp}[n]}{\sum_n N_{fp}[n] + N_{fn}[n] + N_{tp}[n]}$$

- $N_{tp}[n]$: # true positives
- $N_{fp}[n]$: # false positives
- $N_{fn}[n]$: # false negatives

100

Evaluation Metrics (4)

Frame-based evaluation

- Accuracy (alternative metric – Kameoka et al, 2007):

$$Acc_2 = \frac{\sum_n N_{ref}[n] - N_{fn}[n] - N_{fp}[n] + N_{subs}[n]}{\sum_n N_{ref}[n]}$$

- $N_{subs}[n] = \min(N_{fn}[n], N_{fp}[n])$ (# pitch substitutions)
- $N_{ref}[n]$: # ground-truth pitches at frame n

- Chroma accuracy: pitches warped into one octave

- Precision – Recall – F-measure:

$$Pre = \frac{\sum_n N_{tp}[n]}{\sum_n N_{sys}[n]} \quad Rec = \frac{\sum_n N_{tp}[n]}{\sum_n N_{ref}[n]} \quad \mathcal{F} = \frac{2 \cdot Rec \cdot Pre}{Rec + Pre}$$

- $N_{sys}[n]$: # detected pitches

101

Evaluation Metrics (5)

Note-based evaluation

- Each note is characterized by its onset, offset, and pitch
- Onset-only evaluation: a note event is considered correct if its onset is within a tolerance (e.g. +/-50ms) and its pitch within a tolerance (e.g. quarter tone) of a ground truth pitch
- P-R-F metrics can be defined
- Onset-offset evaluation: additional constraint for offset tolerance (e.g. +/- 50ms tolerance **or** offset within 20% of GT note's duration)

0.2100	0.8000	47.0000
0.2300	0.7600	44.0000
0.4100	0.8800	52.0000
0.4300	0.7200	28.0000
0.7900	1.6800	42.0000
0.8500	0.9800	47.0000
0.9100	1.4600	35.0000
0.9900	1.3000	47.0000
1.1500	1.4400	51.0000
1.4700	2.0000	46.0000

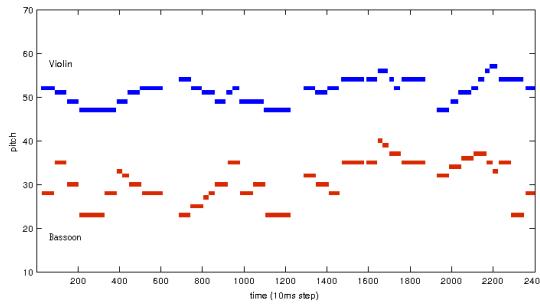
0.2100	0.8800	52.0000
0.2100	0.8000	47.0000
0.2200	0.7700	44.0000
0.2800	0.8300	28.0000
0.7800	1.4500	42.0000
0.8400	1.4500	47.0000
0.8900	1.4500	51.0000
0.8900	1.4500	35.0000
1.4800	2.0100	49.0000
1.4800	2.0100	46.0000

102

Evaluation Metrics (6)

Instrument assignment

- A pitch is only considered correct if it occurs at the correct time and is assigned to the proper instrument source
- Similar metrics as in multi-pitch detection can be defined



103

Public Evaluation

104

Public Evaluation (1)

MIREX Multi-F0 Estimation and Note Tracking task

- Subtasks:
 - Task 1: Frame-based evaluation (multiple instruments)
 - Task 2a: Note-based evaluation (multiple instruments)
 - Task 2b: Note-based evaluation (piano only)
 - Task 3: Timbre tracking (i.e. instrument assignment – not run often...)
- Dataset:
 - Woodwind quintet
 - Synthesized pieces using RWC MIDI and RWC samples
 - Polyphonic piano recordings
 - New dataset for 2015
(piano solo, string quartet, piano quintet, violin sonata)

105

Public Evaluation (2)

MIREX Multi-F0 Estimation and Note Tracking task

- Results for Task 1 (frame-based accuracy)

Teams	2009	2010	2011	2012	2013	2014
Yeh and Roebel	0.69	0.69	0.68	-	-	-
Dressler	-	-	0.63	0.64	-	0.68
Canadas-Quesada et al.	-	0.49	-	-	-	-
Benetos and Dixon/Weyde	-	0.47	0.57	0.58	0.66	0.66
Duan et al.	0.57	0.55	-	-	-	-
Fuentes et al.	-	-	-	0.56	-	-
Elowsson and Friberg	-	-	-	-	-	0.72
Cheng et al.	-	-	-	-	0.62	-
Su and Yang	-	-	-	-	-	0.64

106

Public Evaluation (3)

MIREX Multi-F0 Estimation and Note Tracking task

- Results for Task 2 (onset/offset-based F-measure)

Teams	2009	2010	2011	2012	2013	2014
Yeh and Roebel	0.31	0.33	0.35	-	-	-
Dressler	-	-	-	0.45	-	0.44
Benetos and Dixon/Weyde	-	-	0.21	0.23	0.33	0.36
Duan, Han and Pardo	0.22	0.19	-	-	-	-
Fuentes et al.	-	-	-	0.39	-	-
Elowsson and Friberg	-	-	-	-	-	0.58
Cheng et al.	-	-	-	-	0.29	-
Su and Yang	-	-	-	-	-	0.29
Böck	-	-	-	0.09	-	0.14
Dessein et al.	-	0.24	-	-	-	-
Duan and Temperley	-	-	-	-	-	0.28

107

Public Evaluation (4)

MIREX Multi-F0 Estimation and Note Tracking task

- Results for Task 2 (onset/only F-measure)

Teams	2009	2010	2011	2012	2013	2014
Yeh and Roebel	0.50	0.53	0.56	-	-	-
Dressler	-	-	-	0.65	-	0.66
Benetos and Dixon/Weyde	-	-	0.45	0.43	0.55	0.58
Duan, Han and Pardo	0.43	0.41	-	-	-	-
Fuentes et al.	-	-	-	0.61	-	-
Elowsson and Friberg	-	-	-	-	-	0.82
Cheng et al.	-	-	-	-	0.50	-
Su and Yang	-	-	-	-	-	0.46
Böck	-	-	-	0.50	-	0.54
Dessein et al.	-	0.40	-	-	-	-
Duan and Temperley	-	-	-	-	-	0.45

108

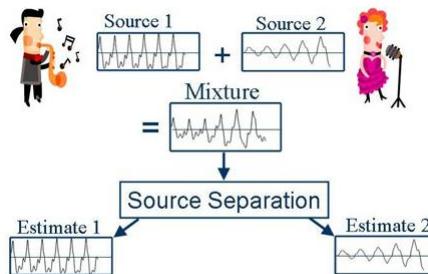
Relations & Applications to Other Problems

109

Relations to Other Problems (1)

Music Source Separation

- Interdependent with multi-pitch detection and instrument identification
- Instrument identification can be improved by separating the source signals [Bosch12]
- Joint instrument identification and separation [Itoyama11]

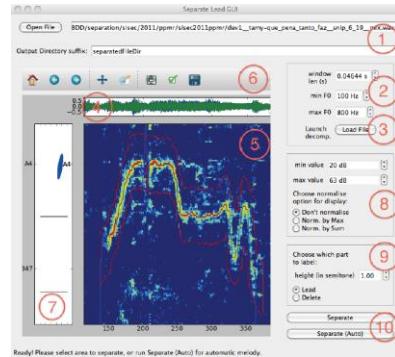


110

Relations to Other Problems (2)

Music Source Separation (cont'd)

- Concepts and algorithms from source separation can be utilized for AMT [Durrieu12, Ozerov12]
- Semi-automatic source separation & F0 estimation [Durrieu12]
- **But:** a better source separation does not necessarily imply better multi-pitch detection! [Tavares13b]

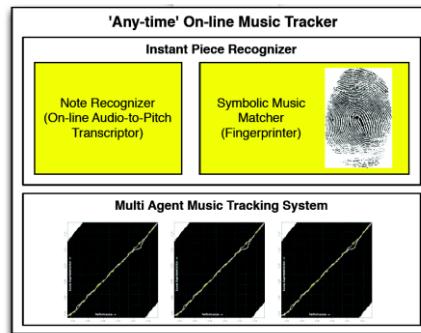


111

Relations to Other Problems (3)

Score following

- [Arzt12]: Identifying score position through transcription-derived pitch- and time-invariant features
- [Duan11]: Use multi-pitch estimation model as the observation model of an HMM for score following (SoundPrism)

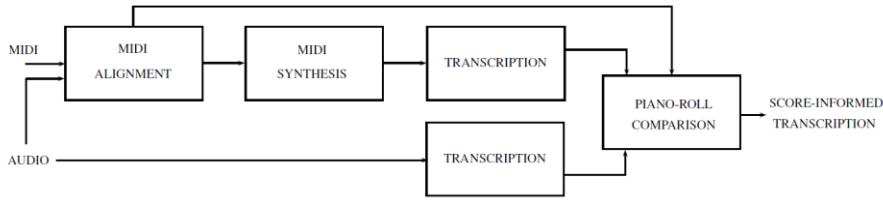


112

Relations to Other Problems (4)

Score-informed transcription

- Combining audio-to-score alignment with automatic music transcription
- Applications: automatic instrument tutoring, performance studies
- [Wang08]: Fusing audio & video transcription with score information for violin tutoring
- [Benetos12, Fukuda15]: Score-informed piano tutoring based on NMF
- [Dittmar12]: Songs2See – (based on multi-pitch detection, score-informed source separation, extraction of instrument-specific parameters)



113

Relations to Other Problems (5)

Applications to Content-based Music Retrieval

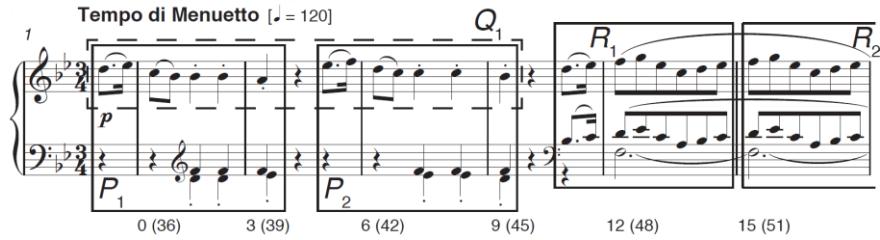
- Deriving high-level features for organising/navigating through audio collections, music similarity & recommendation
- [Lidy07] Music genre classification by combining audio and symbolic descriptors
- [Weyde14] Transcription-derived features for exploring music archives

114

Relations to Other Problems (6)

Applications to Systematic/Computational Musicology

- [Collins14]: Discovery of repeated themes and patterns from automatically transcribed and beat-quantized MIDI

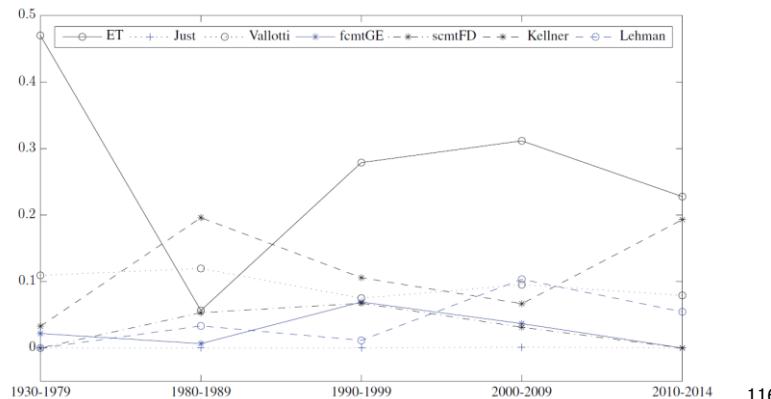


115

Relations to Other Problems (7)

Applications to Systematic/Computational Musicology (cont'd)

- [Dixon11; Tidhar14]: Automatic estimation of harpsichord temperament – using a “conservative” transcription as a first step for precise frequency estimation.

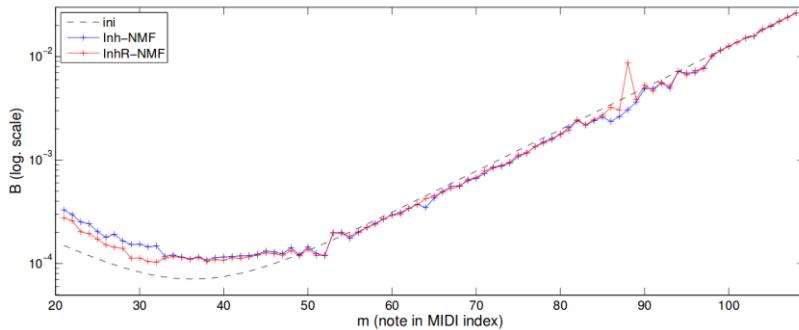


116

Relations to Other Problems (8)

Applications to Music Acoustics

- [Rigaud13]: Joint estimation of multiple pitches and inharmonicity for the piano using an NMF-based model

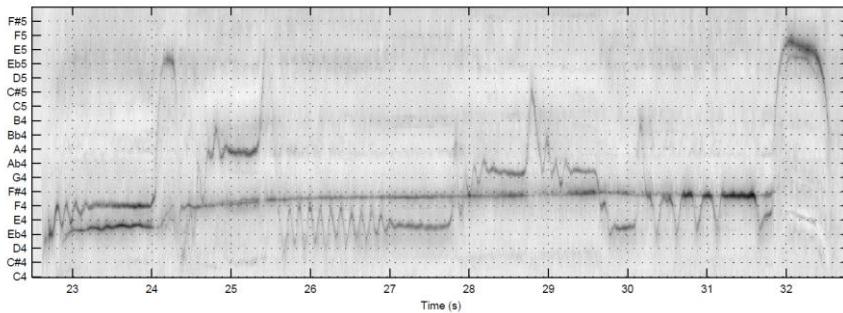


117

Relations to Other Problems (9)

Applications to Music Performance Analysis

- [Jure12]: Pitch salience representations for music performance analysis; also used to assist human transcription



118

Software & Demo

119

AMT Software (1)

Free software / plugins (from academic research)

Authors	Language	URL
Benetos et al	Matlab + Vamp plugin	http://www.eecs.qmul.ac.uk/~emmanouilb/code.html
Duan et al	Matlab	http://www.ece.rochester.edu/~zduan/resource/Resources.html
Fuentes et al	Matlab	http://www.benoit-fuentes.fr/publications.html
Marolt	win32 executable	http://atlas.fri.uni-lj.si/lgm/transcription-of-polyphonic-piano-music/
Pertusa & Iñesta	Vamp plugin + online prototype	http://grfia.dlsi.ua.es/cm/projects/drims/softwareVAMP.php
Raczyński et al	R / Python	http://versamus.inria.fr/software-and-data/multipitch.tar.bz2
Vincent et al	Matlab	http://www.irisa.fr/metiss/members/evincent/software
Zhou & Reiss	Vamp plugin	http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html

120

AMT Software (2)

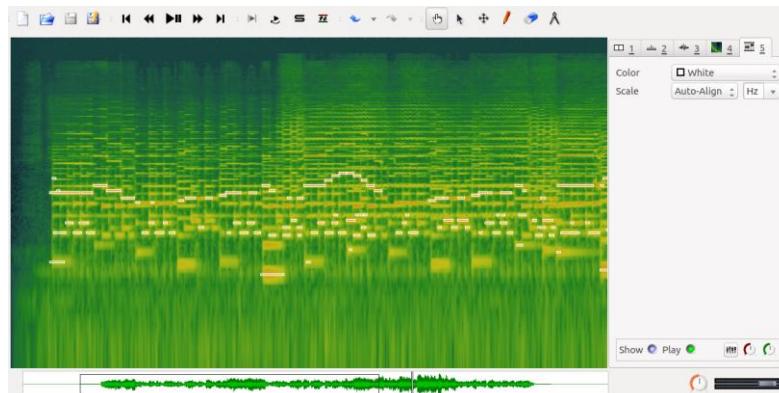
Commercial software / plugins

Name	URL
Akoff Sound Labs	http://www.akoff.com/audio-to-midi.html
intelliScore	http://www.intelliscore.net
Melodyne	http://www.celemony.com
PitchScope	http://www.creativedetectors.com/
Sibelius AudioScore	http://www.sibelius.com/products/audioscore/ultimate.html
Solo Explorer	http://www.recognisoft.com/
Transcribe!	http://www.seventhstring.com/xscribe/
WIDISOFT audio-to-MIDI VST plugin	http://www.widisoft.com/english/translate.html

121

Demo

Silvet Vamp plugin



Silvet download: <https://code.soundsoftware.ac.uk/projects/silvet/files>

Sonic Visualiser download: <http://www.sonicvisualiser.org/download.html>

122

Challenges and Future Directions

123

Challenges and Directions – Evaluation Measures (1)

Design musically meaningful evaluation measures

- Some notes are more musically important

- Some errors are more musically annoying
 - Inharmonic errors > harmonic/octave errors
 - Wrong notes outside the scale > wrong notes within the scale
- The annoyingness depends on the application
 - For music re-synthesis: insertion errors > miss errors
 - For music search: octave errors > semitone errors

124

Challenges and Directions – Evaluation Measures (2)

Some ideas for designing musically meaningful measures

- Observation approach: Analyze how music teachers grade music dictation exams
 - Quantitative analysis of music teachers' evaluation measures
 - Well supported by music theory and music education practice
 - Depends on the type of music
 - Errors made by music students cannot represent errors made by computers
- Experiment approach: Subjective listening tests on different types of algorithmically generated errors
 - Analyze correlations between the presence of errors and the listening experience
 - Full control and easy generation of different types of error
 - Difficult to find enough qualified subjects

125

Challenges and Directions – Musical Knowledge (1)

Incorporating musical knowledge

- Most existing transcription approaches are data-driven (bottom-up)
 - Caused many errors that are not musically meaningful, and hence may be easily avoided by incorporating musical knowledge
- Musicians rely on musical knowledge to transcribe music
 - Key signature, scale
 - Harmonic progression, metrical structure
 - Counterpoint and other composition rules
- Speech recognition successfully integrates *acoustic model* and *language model* through HMM or deep neural networks, although these models cannot be directly applied to AMT
 - Music is polyphonic
 - Music rhythm involves much longer temporal dependencies
 - Music harmony arrangement involves rich music theory

126

Challenges and Directions – Musical Knowledge (2)

Existing attempts in incorporating musical knowledge

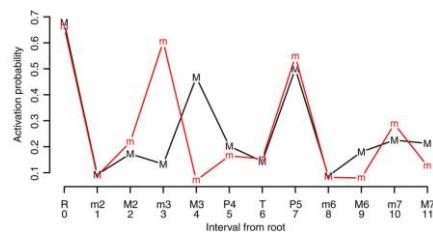
- Blackboard architecture [Martin96; Bello03]
 - Use of competing “knowledge sources”
 - No rigorous mathematical model
- Bayesian networks [Kasino98; Davy06; Cemgil06]
 - Rigorous mathematical models
 - Computationally intensive
 - Very simple musical knowledge (e.g., pitch range, pitch transition)
- More recent approaches

127

Challenges and Directions – Musical Knowledge (3)

[Raczynski et al., 2013] Dynamic Bayesian Networks

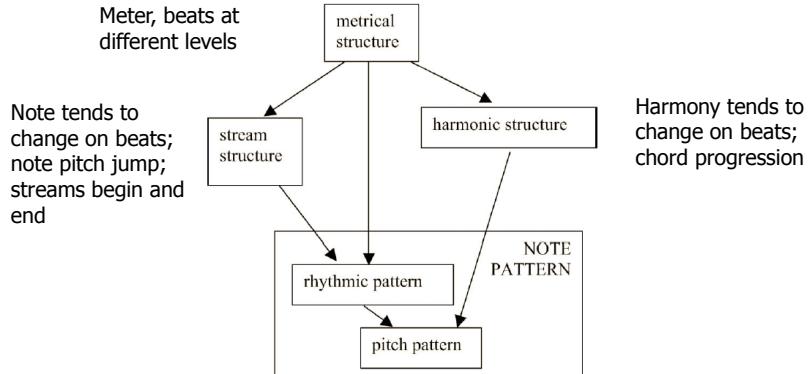
- Chord model: chords transition
- Note model: linear combination of the following sub-models:
 - *Harmonic*: pitch on/off based on underlying chord
 - *Duration*: pitch on/off transition
 - *Voice*: pitch jump
 - *Polyphony*: pitch on/off based on previous polyphony
 - *Neighbor*: pitch on/off based on the note directly below
- All models first-order Markovian
- 3% F-measure improvement from an NMF-based AMT approach



128

Challenges and Directions – Musical Knowledge (4)

[Temperley, 2009] Generative models for deep and interdependent musical structures



- Parameters are hand coded instead of learned from symbolic data
- Preliminary results (unpublished) show 3% improvement on note-level F-measure, using the acoustic model in [Duan & Temperley, 2014]

129

Challenges and Directions – Musical Knowledge (5)

Model temporal dependencies with RNN-RBM

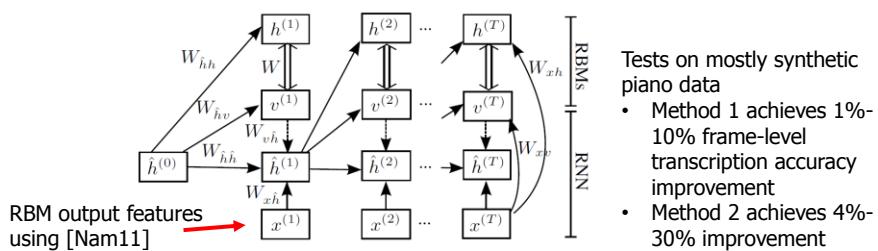
- 1) Product of experts [Boulanger-Lewandowski12]

$$C = -\log P_a(v^{(t)}) - \alpha \log P_s(v^{(t)} | \tilde{\mathcal{A}}^{(t)})$$

Acoustic model by
RBM [Nam11] Proposed
symbolic model

Combinations of the best pitch candidates estimated by the acoustic model

- 2) Joint optimization by I/O RNN-RBM [Boulanger-Lewandowski13]



Tests on mostly synthetic piano data

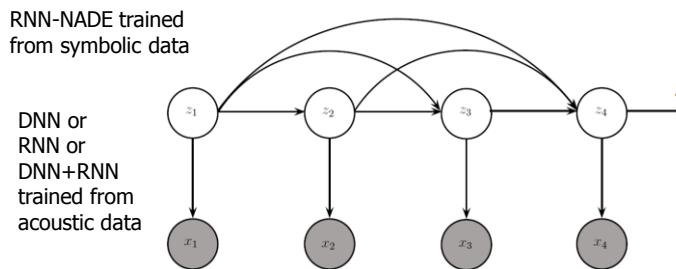
- Method 1 achieves 1%–10% frame-level transcription accuracy improvement
- Method 2 achieves 4%–30% improvement

130

Challenges and Directions – Musical Knowledge (6)

Model music language using RNN

- PLCA + RNN-NADE [Sigtia et al., 2014]
 - RNN-NADE is a variant of RNN-RBM, taking a pitch activity vector sequence as input
 - Impose RNN as a Dirichlet prior for pitch activations into the PLCA framework
 - 3% frame-level transcription accuracy improvement on real data
- RNN + RNN [Sigtia et al., 2015]



131

Challenges and Directions – User Assisted Approach (1)

User-assisted (semi-automatic) music transcription

- What information is helpful and is easy to provide by users?
 - Key, tempo, time signature, structural information, timbre
- How to make the interaction easy for users to annotate?
 - Typing information
 - Editing through graphical user interface
 - Singing/humming melodic lines
 - Playing on a keyboard
- How to reduce the amount of information that users need to provide?
 - The system needs to learn from user annotations quickly and actively
 - An iterative approach is preferred

132

Challenges and Directions – User Assisted Approach (2)

Existing approaches

- Ask users to provide instrument labels for some notes to learn instrument models using shift-invariant NMF [Kirchhoff et al., 2012]
- Ask users to provide transcription of some segments of the piece to learn a PLCA-based model [Scatolini et al., 2015]
- In source separation
 - Singing voice / accompaniment separation through humming [Mysore & Smaragdis, 2009]
 - Music source separation with user-selected F0 track [Durrieu & Thiran, 2012]
 - Interactive Source Separation Editor with user selected spectrogram regions PLCA [Bryan et al., 2014]

133

Challenges and Directions – Non-Western (1)

Automatic transcription of non-Western/non-Eurogenetic/traditional music

- The vast majority of AMT research assumes 12 TET
- Another assumption: monophony/polyphony (whereas in several cultures music is **heterophonic**)
- Research on transcribing non-Western/traditional music:
 - [Gómez13]: Automatic transcription of (a capella singing) flamenco recordings
 - [Bozkurt08; Benetos15]: Pitch analysis and transcription for Turkish makam music
 - [Srinivasamurthy14]: Transcribing percussion patterns in Chinese opera
 - [Kelleher05]: Transcription & ornament detection for Irish fiddle

(a) Melody as notated

(b) Transcription of *oud* performance

134

Challenges and Directions – Non-Western (2)

Automatic transcription of non-Western/non-Eurogenetic/traditional music

- DML system: 20-cent time-pitch representations for 60k recordings of the British Library Sound Archive (<http://dml.city.ac.uk/vis/>)
- **Open problems:**
 - Data! (recordings & annotations)
 - Methodology: culture-specific vs. general-purpose systems
 - Prescriptive vs descriptive notation
 - Engagement from the ethnomusicology community (changing: FMA, AAWM...)

135

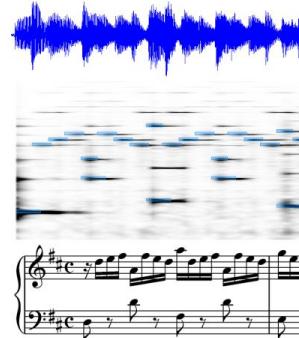
Conclusions

136

Conclusions (1)

State of the field

- Continues to attract attention in the MIR and music signal processing research communities + emerging topic for music language modelling
- Performance (objective + perceptual) has increased over the last decade
- Instrument- and style-specific AMT systems have sufficiently good performance for end-user applications
- AMT-derived features are useful for computing high-level music descriptors

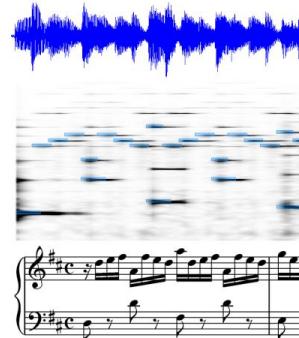


137

Conclusions (2)

State of the field (cont'd)

- As the scope of AMT research continues to grow – increasing number of open problems & sub-problems!
- Agreement that a successful AMT system cannot rely only on information from the acoustic signal.
Input needed from:
 - Music acoustics
 - Music theory/language
 - Music perception
- Unified methodology



138

Thanks for listening!

139