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AMT - Introduction (1) 
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Automatic music transcription (AMT): the process of 
converting an acoustic musical signal into some form of music 
notation (e.g. staff notation, MIDI file, piano-roll,…) 

Music audio 

Mid-level & Parametric representation 
• Pitch, onset, offset, stream, loudness 
• Uses audio time (ms) 

Music notation 
• Note name, key, rhythm, instrument 
• Uses score time (beat) 
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AMT - Introduction (2) 

Fundamental (and open) problem in music information research 
 

Applications: 
• Search/annotation of musical information 
• Interactive music systems 
• Systematic/computational musicology 

 

5 http://dml.city.ac.uk/vis/ 

http://www.celemony.com/en/melodyne/ 

AMT - Introduction (3) 

Subtasks: 

• Pitch detection 

• Onset/offset detection 

• Instrument identification 

• Rhythm parsing 

• Identification of dynamics/expression 

• Typesetting 

6 
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AMT - Introduction (4) 

Core problem: multi-pitch detection 
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AMT - Introduction (5) 

How difficult is it? 

• Let’s listen to a piece and try to transcribe (hum) the 
different tracks 
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J. Brahms, 
Clarinet Quintet 
in B minor, 
op.115. 3rd 
movement 
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AMT - Introduction (6) 

We humans are amazing! 

• “In Rome, he (14 years old) 
heard Gregorio Allegri's 
Miserere once in performance 
in the Sistine Chapel. He wrote 
it out entirely from memory, 
only returning to correct minor 
errors...” 

 -- Gutman, Robert (2000). Mozart: 
A Cultural Biography Wolfgang Amadeus Mozart 

• Can we make computers compete with Mozart? 
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AMT - Introduction (7) 

Challenges: 

• Concurrent sound sources interfere with each other 
– Overlapping harmonics: C4 (46.7%), E4 (33.3%), G4 (60%) 

 

 

 

 

 

 

• Large variety of music 
– Music pieces: style, form, etc. 

– Instrumentation: bowed/plucked strings, winds, brass, percussive, etc. 

– Playing technique: legato, staccato, vibrato, etc. 

10 
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AMT - Introduction (8) 

State of the Art - Limitations:  

• Performance clearly below of a human expert - especially for 
multiple-instrument music 

• Lack of dataset size/diversity 

• No unified methodology (as e.g., automatic speech recognition) 

• Little input beyond CS/EE (musicology, music cognition, music 
acoustics) 

11 
Automatic transcription of B. Smetana – Má vlast (Vltava) 

Tutorial Focus/Objectives 

• Focusing (mostly) on polyphonic 
music transcription 

• Most work on Western tonal music! 
We’ll try to go beyond that. 

• Presenting an overview of 
representative AMT research (+ 
related problems) 

• Discussion on limitations, challenges, 
and future directions 

• Resources: bibliography, datasets, 
code, demos 

• Tutorial website: 

 

12 

http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/  

http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/


28/10/2015 

7 

Tutorial Outline 
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3. State-of-the-art research on AMT 

(1st part) 
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5. Relations and applications to other 

problems 
6. Software & Demo 
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Tutorial Website:  
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/  

 

 

 

How do humans 

transcribe music? 
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Pitch Perception (1) 

  

 

 

 

 

 

 

 

15 

Pitch: 
• That attribute of auditory sensation in terms of which sounds 
may be ordered on a scale extending from low to high (ANSI) 
• (Operational) A sound has a certain pitch if it can be reliably 
matched to a sine tone of a given frequency at 40 dB SPL 
• People hear pitch in a logarithmic scale 

(Hz) 

Note 
index 

Pitch Perception (2) 

 

 

Properties of pitch perception [de Cheveigné, 2006; Houtsma, 1995]: 

• Range: Pitch may be salient as long as the F0 is within about 30Hz-5kHz 

• Missing fundamental: the fundamental frequency need not be present in for a 
pitch to be perceived 

• Harmonics: For a sound with harmonic partials to be heard as a musical tone, its 
spectrum must include at least 3 successive harmonics of a common frequency 

 

 

16 

Fundamental frequency (F0): is defined as the reciprocal of the 
period of a periodic signal.  

Figure:  
spectrum of a C4 piano 
note. The fundamental is 
located at 261.6Hz. 
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Pitch Perception (3) 

• Harmonics make tones more pleasant, but may 
confuse pitch perception, especially in polyphonic 
settings (octave/harmonic errors) 

17 

f     2f     3f    4f    5f     6f    7f    8f     9f   10f  11f   12f     

C2   C3   G3   C4   E4  G4   Bb4  C5   D5   E5  F#5  G5     

Pitch Perception (4) 

  

 

 

 

Pitch perception theories have 
informed the creation of AMT systems. 

 

Modern theories:  

• Pattern matching [de Boer, 1956; 
Wightman, 1973; Terhardt, 1974] 

• Autocorrelation model [Licklider, 
1951; Meddis & Hewitt, 1991; de 
Cheveigné, 1998] 
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Relative pitch: Ability to recognise and reproduce frequency ratios 
Absolute pitch: Identifying pitch on an absolute nominal scale without 
explicit external reference 

Figure from Meddis & Hewitt, 1991 
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Pitch Perception (5) 

Pitch is not a one-dimensional entity! (low/high) 

Multidimensional aspects of pitch: 

• Octave similarity – helix representation [Revesz, 1954] 

• Pitch distance – circle of fifths representation [Shepard, 1982] 

19 

Human Transcription (1) 

• Called musical dictation in ear training pedagogy 

• Definition: a skill by which musicians learn to identify, solely by hearing, 
pitches, intervals, melody, chords, rhythms, and other elements of music. 

• Required in all college-level music curriculums; general expectation after 
4-5 semesters’ training:  

  

20 

source: http://www.sheetmusic1.com/ear.training.html 

“they can transcribe an excerpt of a quartet (e.g. four measures) with 
quite complex harmonies, after listening to it four or five times”                    

---- Temperley, 2013 
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Human Transcription (2) 

• For accurate transcription, a great deal of practice is often 
necessary! 

 

• How trained musicians transcribe music [Hainsworth03]: 

– Some use a transcription aid: musical instrument, tape recorder, 
software 

– Faithful transcription vs. reduction/arrangement 

– Implicitly: style detection, instrument identification, beat tracking 

– Process:  

1. Rough sketch of the piece 

2. Chord scheme / bass line 

3. Melody + counter-melodies 

21 

 

 

 

State-of-the-art 

research in AMT 

22 
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State-of-the-art Outline 

1. Multi-pitch analysis 

A. Frame-level 

B. Note-level 

C. Stream-level 
 

2. Percussive instruments transcription 
 

3. Towards a complete music notation 

23 

State of the Art of Multi-pitch Analysis 

• Frame-level (multi-pitch estimation) 
– Estimate pitches and polyphony in each 

frame 

– Many methods 

 

• Note-level (note tracking) 
– Estimate pitch, onset, offset of notes 

– Fewer methods 

 

• Stream-level (multi-pitch streaming) 
– Stream pitches by sources 

– Very few methods 
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How difficult is it? 

• Let’s do a test! 

 

– Q1: How many pitches 
are there? 

 

– Q2: What are their 
pitches? 

 

– Q3: Can you find a pitch 
in Chord 1 and a pitch in 
Chord 2 that are played 
by the same instrument? 

Chord 1 Chord 2 

25 

2 3 

C4/G4 C4/F4/A4 

Clarinet  G4 
 

Horn      C4 

Clarinet A4 
Viola     F4 
Horn     C4 

Frame-level: Multi-pitch Estimation 

Categorization of methods 

• Domain of operation: time, frequency, hybrid 

• Representation: 
– Time domain: raw waveform, auditory filterbank 

– Frequency domain: STFT spectrum, CQT spectrum, ERB filterbank, 
specmurt, spectral peaks 

• Core algorithm: rule-based, signal processing approaches, 
maximum likelihood, Bayesian, spectrogram decomposition, 
sparse coding, classification-based, etc. 

• Iterative vs. joint estimation of pitches 
 

26 
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Time Domain Methods 

• Key idea 

– Harmonic sounds are periodic 

– Use autocorrelation function 
(ACF) to find signal period 

 

• Difficulty 

– Tend to have subharmonic 
errors 

– Periodicity is unclear when 
multiple harmonic sounds are 
mixed 

27 

Figure from [de Cheveigné & Kawahara, 2002] 

waveform 

ACF 

period 

Time Domain - Autocorrelation 

• Detailed simulation of 
human auditory system 
– Outer- and middle-ear freq. 

attenuation effect 

– ~100 channels with critical 
bandwidth 

– Inner hair cell response 

 

• Simplified version 
– Only 2 channels 

– Enhanced SACF: remove 
SACF peaks due to integer 
multiples of periods 

28 

[Meddis & Hewitt, 1991] 

[Tolonen & Karjalainen, 2000] Summary ACF (SACF) 

Figures from [Tolonen & Karjalainen, 2000] 
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An oscillator network 

Time Domain – Adaptive Oscillators 

• Oscillator 
– Parameters: freq. and phase 

• Adaptive oscillator 
– Adapts its freq. and phase to 

input signal 

• Oscillator networks 
– Each network tracks a group 

of harmonically related 
partials 

– In total 88 networks for 88 
pitches 

Pros: good performance on piano 

Cons: may not deal well with 
frequency deviation and 
modulations 

29 

[Marolt, 2004] 
A single oscillator 

Time Domain – Probabilistic Modeling (1) 

• Harmonic model [Walmsley et al., 1999] 

 

 

𝑦𝑡 =   𝛼𝑚 cos 𝑚𝜔0,𝑘𝑡 +

𝑀𝑘

𝑚=1

𝐾

𝑘=1

𝛽𝑚 sin 𝑚𝜔0,𝑘𝑡 + 𝑣𝑡 

 

– Parameters: 𝐾, {𝑀𝑘}, {𝛼𝑚}, {𝛽𝑚}, {𝜔0,𝑘}, variance of 𝑣𝑡  

– Impose priors on parameters 

– Bayesian inference by Markov Chain Monte Carlo (MCMC) 

Pros: rigorous mathematical mode 

Cons: computationally expensive; purely harmonic model 

30 

Gaussian 
noise (i.i.d.) 

#notes #harmonics Harmonic 
amplitude 
and phase 

F0 
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Time Domain – Probabilistic Modeling (2) 

• A more detailed model [Davy & Godsill, 2003] 

 

 

 

 

– Auto-regressive model for 𝑣𝑡. 

31 

Allows harmonics to 
change amplitude 
within a note 

Deals with 
detuning  

Pros: Promising result 
on real recording 
(#notes K is provided) 
 
Cons: computational 
intensive 

• Damped note model 

    [Cemgil et al., 2006] 

Time Domain – Probabilistic Modeling (3) 

32 

Note activity 
(sound/mute) 

Audio mixture 

j-th note 
waveform 

state 

state waveform 
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Frequency Domain Methods 

• Key idea 

– Each pitch has a set of 
harmonics 

– Recognize the harmonic 
patterns 

 

• Difficulty 

– Tend to have harmonic 
errors 

– Harmonic amplitude varies 

– Overlapping harmonics 

Iterative Spectral Subtraction 

34 

[Klapuri, 2003] 

Pros: good performance, simple, fast 
Cons: hard to subtract the appropriate amount of energy 
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Iterative Bispectral Subtraction 

• Bispectrum 
– 2-D Fourier transform of the 3rd order cumulant of the signal, or 

equivalently, 

– Account for nonlinear partial interactions 
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[Argenti et al., 2011] 

Algorithm 
1. Calculate Constant Q 

bispectrum of signal 
2. Perform 2-d correlation 

between bispectra of 
signal and a template 

3. Highest correlation gives 
a pitch estimate 

4. Cancel entries of signal 
bispectum corresponding 
to harmonics of the pitch 

5. Repeat 2-4. 

Spectral Peak Modeling 

• Peak picking 

• Choose pitch candidates 

– Around first several peaks 
and their integer fractions 

• Calculate salience (or 
likelihood) of each pitch or 
each combination of pitches 

• Choose the best ones  

 
• Pros: intuitive; works well; more 

compact representation of audio 

• Cons: sensitive to peak detection; 
has difficulty in dealing with 
sources with different loudness 

36 

Figure from [Duan et al., 2010] 
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Spectral Peak Modeling – Rule-based 

• Rule-based approaches 

– [Pertusa & Iñesta, 2008] 
• Salience(pitch) = Loudness(partials) * Smoothness(partials)  

• Salience(pitch combination) = Sum(saliences of pitches)  

 

– [Yeh et al., 2010] 
• Salience of a pitch depends on harmonicity, smoothness, and 

synchronicity of its partials 

 

• Pros: fast, work well 

• Cons: rule-based methods may be hard to adapt to other 
instruments 

37 

Spectral Peak Modeling – Maximum Likelihood (1) 

• [Duan et al., 2010] 

38 

Probability of observing these 
peaks: 𝑓𝑘 , 𝑎𝑘 , 𝑘 = 1,… , 𝐾. 

Probability of not having any harmonics 
in the non-peak region 

𝑝 𝑶 𝜽 = 𝑝 𝑶peak 𝜽 ⋅ 𝑝 𝑶non−peak 𝜽  

True pitch True pitch Pitch hyp 

𝑝 𝑶peak 𝜽  is large 

𝑝 𝑶non−peak 𝜽  is small 

𝑝 𝑶peak 𝜽  is small 

𝑝 𝑶non−peak 𝜽  is large 

Pitch 
hyp 

Pros: balances harmonic and subharmonic errors 
Cons: soft notes may be masked by others 

resourses/C4.wav
resourses/C4.wav
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Spectral Peak Modeling – Maximum Likelihood (2) 

• [Emiya et al., 2007] 
– Auto-Regressive (AR) model for harmonics of pitches 

– Moving-Average (MA) model for residual 

39 

Both tend to 
be smooth! 

Pros: balances harmonic 
and subharmonic errors 
 
Harmonic error 
• AR model fits well 
• MA model doesn’t 
 
Subharmonic error 
• MA model fits well 
• AR model doesn’t 

 
Cons: the assumptions 
on spectral smoothness 
is not always true 

Spectral Peak Modeling – Maximum Likelihood (3) 

• [Peeling & Godsill, 2011] 
– Assumes that the number of partials of the 𝑖-th note is a non-

homogenous Poisson process on the frequency axis with a rate of 
𝜆𝑖 𝑓 , which is the expected partial density at frequency 𝑓 

– Assumes that concurrent notes are independent 

– So the number of partials of all notes is a superposition of multiple 
independent Poisson processes, hence another Poisson process with 
rate 𝜆 𝑓 =   𝜆𝑖 𝑓𝑖  

– Models 𝜆𝑖 𝑓  with a GMM, with Gaussians centered at harmonics of 
the 𝑖-th note 

 

40 

Frequency and 
number of 
detected partials 
(peaks) 

Rate function, 
dependent on 
pitch hypotheses 

Likelihood 
function 

Pros: mathematically interesting 
Cons: strong assumption 
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Full Spectrum Modeling – Probabilistic (1) 

• Each note = tied- Gaussian 
Mixture Model (tied-GMM) 

 

 

• Signal = Mixture of GMMs 

 

 

 

41 

• Key idea: view spectra as (parametric) probabilistic 
distributions 

Figures from [Yoshii & Goto, 2012] 

Pros: flexible to incorporate priors on 
parameters 
Cons: doesn’t model inharmonic and 
transients; many parameters to optimize 

Full Spectrum Modeling – Probabilistic (2) 

• PreFEst [Goto, 2004] 

– Gaussian models are given; estimate Gaussian mixing weights 
and note mixing weights 

• Harmonic Clustering (HC) [Kameoka et al., 2004] 

– Estimate all parameters 

– Use Akaike Information Criterion (AIC) to decide number of 
notes 

• Infinite Latent Harmonic Allocation (iLHA) [Yoshii & Goto, 
2012] 

– Model allows arbitrary number of Gaussians and notes 

– Automatically decide their numbers using non-parametric 
Bayesian inference 

42 
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Full Spectrum Modeling – Probabilistic (3) 

Non-parametric model 

• Probabilistic Latent Component Analysis (PLCA) 

43 

𝑃𝑡 𝑓 ≈ 𝑃 𝑓 𝑧 𝑃𝑡(𝑧)

𝑧

 

 

Dictionary 
Elements 
𝑃 𝑓 𝑧  

Activation 
weights 
𝑃𝑡(𝑧) 

Sound quanta 
distribution at 𝑡 

Time-invariant 
sound quanta 
distribution for 
each component 

Distribution of 
components 

[Smaragdis & Raj, 2006] 

 

 

 

Spectrogram Decomposition (1) 

• Non-negative Matrix Factorization (NMF) applied to magnitude 
spectrograms [Smaragdis03] 

• Related methods: Probabilistic Latent Component Analysis (PLCA), 
sparse coding 

• Dictionary can be  
fixed or adaptive 

44 



28/10/2015 

23 

Spectrogram Decomposition (2) 

 
 
 
AMT Models with Fixed Templates 
• W: note dictionary; H: pitch activation 
• Keep W fixed, only estimate H (e.g. [Dessein10; Ari12]) 

45 

NMF model: Given a non-negative matrix V find non-negative 
matrix factors W and H such that: 
 

Spectrogram Decomposition (3) 

Fixed Templates (continued) 
• PLCA + eigeninstruments [Grindlay11] 
• PLCA + sparsity/continuity priors [Bay12] 
• Pros: dictionary incorporates prior knowledge on instrument model + 

acoustics, good performance in a source-dependent scenario 
• Cons: models perform poorly if test audio doesn’t match the dictionary 

46 
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Spectrogram Decomposition (4) 

Adaptive templates 

• Bayesian NMF + 
harmonicity/smoothness 
[Bertin10] 

• NMF with adaptive harmonic 
decomposition [Vincent10] 

• PLCA with template adaptation 
[Benetos14] 

• Pros: dictionary closely matches 
test audio, potentially improving 
AMT performance 

• Cons: strong assumptions (e.g. 
strictly harmonic spectra, lack of 
transient components, relying 
on a good initial estimate…) 

47 

Spectrogram Decomposition (5) 

Convolutive models (NMD, Shift-Invariant PLCA) 
• SIPLCA – fixed templates [Benetos12] 
• SIPLCA – adaptive templates [Fuentes13] 
• Pros: can model tuning changes & frequency modulations 
• Cons: computationally expensive; no improvement over linear 

models in some cases (e.g. tuned piano) 

 

48 
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Spectrogram Decomposition (6) 

Sparse coding 
• Key concept: spectral templates are sparse; pitch activation is 

sparse for each time frame 
• Sparse coding [Abdallah06] 
• Group sparsity [O’Hanlon12] 
• Pros: handling large dictionaries, computationally efficient methods 
• Cons: little support on incorporating prior knowledge 

49 

Classification-based Methods 

• Basic idea 

– View polyphonic music transcription as multi-label classification 

– Each quantized pitch (e.g., MIDI number) is a class 

– Positive/negative examples: frames contain/not contain the 
pitch 

• Pros: 

– Simple idea 

– Requires no acoustical prior knowledge 

• Cons: 

– Only outputs quantized pitch 

– Requires lots of training data given the many class combinations 

– May overfit training data; hard to adapt to different 
datasets/instruments 

 50 
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Classification-based Methods (1) 

[Marolt, 2004] 

• 76 neural networks for piano notes (except for the lowest 12 notes)  

• Input: output of partial tracking networks across multiple frames 

 

 

 

 

 

 

 

 

• Combined with onset detection modules to achieve note-level 
transcription  SONIC 

51 

Classification-based Methods (2) 

[Poliner & Ellis, 2007] 

• 87 independent one-vs-all 
SVMs for piano (except for 
the highest note C8) 

• Trained on MIDI-
synthesized piano 
performances 

• Features: magnitude 
spectrum within 

 

 

 

• HMM smoothing for each 
class independently 

52 

 

0−2 kHz, for notes ≤ B5 (988Hz) 

1−3 kHz, for C6 ≤ notes ≤ B6

2−4 kHz, for notes ≥ C7 (2093Hz)

 

SVM output 

HMM output 
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Classification-based Methods (3) 

[Nam et al., 2011] 

• Automatic feature learning by deep belief network (DBN) 

53 

Feature 
extraction 

(DBN) 

Classification 
(SVM) 

Post-
processing 

(HMM) 

Fine tune DBN 
weights for each 
note separately 

Fine tune DBN 
weights for all 
notes together 

2 hidden layers with 
256 nodes each 

Input: magnitude 
spectrum 

Classification-based Methods (4) 

[Böck & Schedl, 2012] for piano transcription 

• Bidirectional long short-term memory (BLSTM) network  

– Input layer: spectrum and its first-order time difference 

– 3 bidirectional hidden layers, 88 LSTM units each 

– 88 units in the regression output layer 

– Thresholding and pick picking for onset detection 

 

 

 

 

 

 

• Pros: output notes jointly 

 

 
54 
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Classification-based Methods (5) 

[Raphael, 2002] for piano transcription 

• Hidden Markov model (HMM) 

– States: note combinations 

– Observations: spectral features (energy, spectral flux, mean and 
variance of frequency distribution in each frequency band) 

• Training: unsupervised training using piano audio and non-aligned 
MIDI scores (Baum-Welch algorithm) 

– Initialize states using score 

– Iteratively adjust model parameters and states 

• Recognition: state space is huge, even after some pruning!  

– Restrict state space by multi-pitch estimation using observation model 

– Viterbi decoding 

Pros: captures note transitions 

Cons: computationally expensive 
55 

Other Interesting Approaches 

Specmurt Analysis: IFT of log-freq power spectrum [Saito et al.,  2008] 

• Assumes a common harmonic structure of all notes 

• Iterative estimation of 𝑢(𝑥) and ℎ(𝑥) 

 

 

 

 

 

 

 

 

• Harmonic structure is shared by all notes in the same frame, but 
not necessarily in different frames, in contrast to many other 
methods e.g., NMF methods 

56 

∗ = Spectrum 
domain 

Specmurt 
domain 
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Other Interesting Approaches 

• Combining spectral and temporal representations [Su & Yang, 
2015] 

 

 

 

 

 

 

 

 

 

• Rules are designed to find F0s that have a prominent harmonic 
series in 𝑈(𝑓) and a prominent subharmonic series in 𝑉(1/𝑓) 

57 

Peaks in log-
amplitude spectrum 
(harmonic errors) 

Peaks in 
autocorrelation 
function 
(subharmonic 
errors) 

State of the Art 

• Frame-level (multi-pitch estimation) 
– Estimate pitches and polyphony in each 

frame 

– Many methods 

 

• Note-level (note tracking) 
– Estimate pitch, onset, offset of notes 

– Fewer methods 

 

• Stream-level (multi-pitch streaming) 
– Stream pitches by sources 

– Very few methods 
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Note Tracking 

• Onset detection followed by multi-pitch estimation between 
onsets 

– [Marolt, 2004; Emiya et al., 2010; Grosche et al., 2012; 
O’Hanlon et al., 2012; Cogliati & Duan, 2015a] 

– Can be sensitive to onset detection accuracy 

 

• As post-processing of frame-level pitch estimates 

– Form notes independently by connecting nearby pitches 

• Ignores interactions between simultaneous pitches 

 

– Consider interactions between simultaneous pitches 

 

• Directly from audio 
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Frame Level  Note Level (1)  

• Based on pitch salience/likelihood/activations 

– Thresholding, filling, pruning: [Bertin et al., 2010; Dessein et al., 
2010; Carabias-Orti et al., 2011; Grindlay & Ellis, 2011; Böck & 
Schedl, 2012; Fuentes et al., 2013; Weninger et al., 2013] 

– Median filtering: [Su & Yang, 2015] 

– Pitch-wise on/off HMMs - [Poliner & Ellis, 2007; Nam et al., 
2011; Benetos & Dixon, 2013] 
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Figure from [Benetos & Dixon, 2013] 
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Frame Level  Note Level (2) 

• Based on pitch salience/likelihood/activations 

– HMM smoothing: [Ryynanen & Klapuri, 2005] 

– Model each note with a note event HMM (3 states) 

– Observation: pitch deviation, pitch salience, onset strength 

 

 

 

 

– Model silence with a silence HMM (1 state) 

– Model transition between notesnotes and 
notessilence with a musicological HMM 

• Note transition is key-dependent 

• Note sequence: starts with silencenote and ends with notesilence 

• Greedy iterative algorithm to find multiple note sequences 
61 

Frame Level  Note Level (3) 

Problems of forming notes independently 

• Contains many spurious notes caused by consistent MPE 
errors (usually octave/harmonic errors) 

• Often violates instantaneous polyphony constraints 
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Ground-truth 
Results from the “connect-fill-
prune” approach 



28/10/2015 

32 

Frame Level  Note Level (4) 
• [Duan & Temperley, 2014] 

considering note interactions 
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Note Tracking from Audio Directly (1) 

[Kameoka et al., 2007]  

• Harmonic temporal 
structured clustering 
(HTC) 

 

 

 

 

 

 

 

• EM algorithm 
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Note model 

Along frequency 

Along time 

Activation of 
sources (latent 
variables) 

Mixture 
spectrogram 

Source 
signal parameters 
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Note Tracking from Audio Directly (2) 

[Berg-Kirkpatrick et al., 
2014] 

• An NMF-like approach for 
piano transcription 

– Each note is modeled by 
a spectral profile and an 
activation envelope 

– Duration and global 
velocity of activation 
envelope is generated 
from an HMM with two 
states (play and rest) 

• Spectral profiles and 
activation envelopes are 
initialized using other 
pianos 
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Note Tracking from Audio Directly (3) 

[Ewert et al., 2015] for piano transcription 

• Model each note as a series of log-freq magnitude spectra (states) 

 

 

 

 

Mixture spectrum =   spectrum(state)  ∗  activation 

88 notes

 

 

• Too many state combinations! 

• Greedy algorithm 

– Step 1: Estimate all state sequences for each note independent 

– Step 2: Decompose mixture spectrum into active notes to estimate 
activations 

66 

unknown 

Silence Minimun note length = TM 

State space 
of a note 
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Note Tracking from Audio Directly (4) 

[Cogliati et al., 2015] for piano transcription 

• Time domain convolutional sparse coding 

 

 

 

 

 

 

 

• Pros: high accuracy and onset precision 

• Cons: piano/environment-dependent; 
doesn’t estimate offset 
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Note templates 
(pre-recorded) 

Note activation weights 
(i.e., the transcription) 

Music signal to 
be transcribed 

Sparsity 
regularization 

State of the Art 

• Frame-level (multi-pitch estimation) 
– Estimate pitches and polyphony in each 

frame 

– Many methods 

 

• Note-level (note tracking) 
– Estimate pitch, onset, offset of notes 

– Fewer methods 

 

• Stream-level (multi-pitch streaming) 
– Stream pitches by sources 

– Very few methods 
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Multi-pitch Streaming (Timbre Tracking) 

• Supervised 

– Train timbre models of sound sources 

– Apply timbre models during pitch estimation: [Cont et al., 2007; 
Bay et al., 2012; Benetos et al., 2013] 

– Classify estimated pitches/notes: [Wu et al. 2011] 

• Supervised with timbre adaptation 

– Adapt trained timbre models to sources in mixture: [Carabias-
Orti et al., 2011; Grindlay & Ellis, 2011] 

• Unsupervised 

– Cluster pitch estimates according to timbre: [Duan et al., 2009, 
2014; Mysore & Smaragdis, 2009; Arora & Behera, 2015] 
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Timbre Tracking – Unsupervised (1) 

[Duan et al., 2009, 2014] 

• Constrained clustering 

– Objective: maximize timbre 
consistency within clusters 

– Constraints based on pitch 
locations: must-links and cannot-
links 

• Timbre representation: harmonic 
structure feature 

• Iterative algorithm: update 
clustering to monotonically 
decrease objective function and 
satisfy more constraints 
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Timbre Tracking – Unsupervised (2) 

[Arora & Behera, 2015] 

• Constrained clustering 

– Objective: maximize timbre consistency within clusters 

– Constraints based on pitch locations: grouping constraints (i.e., pitch 
continuity) and simultaneity constraints (i.e., simultaneous pitches) 

• Timbre representation: MFCC 

• Clustering algorithm: hidden Markov random field 
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Timbre Tracking – Unsupervised (3) 

[Mysore & Smaragdis, 2009] for relative pitch tracking 

• Shift-invariant PLCA on constant-Q spectrogram 

– Assumption: instrument spectrum shape invariant to pitch 

– Constraints: 1) note activation over frequency shift is unimodal; 2) 
note activation over time is smooth 

• Can be viewed as a pitch clustering algorithm 
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• Pros: pitch estimation and 
timbre tracking are performed 
at the same time 

• Cons: does not recognize the 
absolute pitch 
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State-of-the-art: 

Transcribing Percussive 
Instruments 

73 

Percussive Instruments Transcription (1) 

• Core application: transcribing drum kit sounds 

• Literature: 
– Transcribing solo drums 
– Reducing percussive sounds for transcribing pitched sounds 
– Transcribing drums in the presence of pitched sounds 
– Transcribing drums & pitched sounds 

74 
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Percussive Instruments Transcription (2) 

• [Gillet and Richard, 2008]: 
combines information from the 
original music signal and a drum 
track enhanced version 
obtained by source separation 

• Large set of features (temporal, 
energy, spectral, perceptual…) 

• Drum classification using  C-
support vector machines (C-
SVM) 

• Separation by harmonic/noise 
decomposition and 
time/frequency masking 
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Percussive Instruments Transcription (3) 

• [Paulus and Klapuri, 2009]: using a network of connected hidden Markov 
models (HMMs) 

• HMMs are used to perform the segmentation and recognition jointly 

• Features: MFCCs + temporal derivatives 
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Percussive Instruments Transcription (4) 

Spectrogram decomposition approaches 

• [Lindsay-Smith et al, 2012]: convolutive NMF with time-frequency patches 

• [Dittmar and Gärtner, 2014]: realtime transcription + separation with NMF 
and semi-adaptive bases 

• [Benetos et al, 2014]: transcribing drums + pitched sounds using 
supervised PLCA 
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Percussive Instruments Transcription (5) 

Discussion 

• Good performance for drum transcription in a supervised scenario, even 
in real-time applications 

• Temporal accuracy needed is higher compared to pitched sounds! 

• Source adaptation: significant improvement, but more work needed for 
handling dense drum polyphony & complex patterns 

• Open problem: transcribing both drums & pitched sounds (also: lack of 
data for evaluation!) 
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State-of-the-art: 

Towards a Complete  

Music Notation 

79 

Towards a complete music notation (1) 

Current AMT systems can (up to a point!): 

• Detect (multiple) pitches, onsets, offsets 

• Identify instruments in polyphonic music 

• Assign detected notes to a specific instrument 

 

Also, some systems are able to: 

• Detect & integrate rhythmic information  

• Detect tuning (per piece/note) 

• Extract velocity per detected note 

• Transcribe fingering (for specific instruments) 

• Quantise pitches over time/beats 

 

Significant work needs to be done in order to extract a complete score 
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Towards a complete music notation (2) 

Dynamics 

• [Ewert11]: extracting note intensities in a score-informed scenario. 
Mapping with MIDI velocity information. 

• [Kosta14]: Mapping between SPL and dynamic markings in the score 

• Open problems:  
– Evaluation on intensity/velocity detection for AMT systems 

– Mapping between AMT intensities -> MIDI velocities -> dynamic markings 

– Datasets with audio + MIDI with velocity info + dynamic markings 
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Towards a complete music notation (3) 

Rhythm quantisation 

• [Collins14]: Combines multi-pitch detection with beat tracking for creating 
beat-quantized MIDI (goal: discovery of repeated themes).  

• [Ochiai12]: Best structure modelling within an NMF-based multi-pitch 
detection system. 

• Open problems: 

– Joint estimation of rhythmic 
structure and pitches 

– Exploit onset detection 

– Evaluation of beat-quantized 
outputs; comparison with  
scores? 
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Towards a complete music notation (4) 

Fingering / string detection 

• [Barbancho12]: extracting fingering configurations automatically from a 
recorded guitar performance (formulated as an HMM).  

• [Maezawa12]: violin fingering transcription (formulated as a GMM-HMM) 

• [Dittmar13]: real-time guitar string detection; feature extraction from 
multi-pitch pre-processing step & SVMs for classification. 

• Open problems: 
– Instrument model adaptation 

– Joint estimation of fingerboard location and fingering 

– Integration into a general-purpose AMT system 
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Towards a complete music notation (5) 

Computer Music Engraving / Typesetting 

• Various software tools:  
Sibelius, MuseScore, Finale, LilyPond, MaxScore, ScoreCloud… 

• Most literature from the point of software development – little 
information on objective/user evaluation 

• Unknown performance on engraving “noisy” scores from AMT systems 
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Synthesized MIDI:  

MuseScore-generated score of a MIDI transcription (MAPS_MUS-mz_333_3) 
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Datasets 
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Datasets (1) 

• Hard to come by! 

 

• Annotations can be generated: 
– Automatically (e.g. from a Disklavier piano, or by single-pitch detection on 

multi-track recordings) 

– Semi-automatically (e.g. manual corrections from F0 tracking or alignment) 

– Manually (e.g. annotating each note, playing back the music on a digital 
instrument [Su15b]) 

 

• Dataset types: 
1. Polyphonic 

2. Melody/baseline 

3. Percussive 

4. Additional resources (e.g. chord annotations) 

86 
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Datasets (2) 

Polyphonic datasets – chords/isolated notes 
 
1. UIOWA Musical Instrument Samples 

 
 http://theremin.music.uiowa.edu/MIS.html 

- mono/stereo recordings for woodwind, brass, and string - 
instruments + percussion (isolated notes) 

 
2. RWC Musical Instrument Sounds 

 
 https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html 
 - Isolated sounds for 50 instruments (incl. percussion) 
 - Covers different playing styles, dynamics, instrument models 
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Datasets (3) 

Polyphonic datasets – chords/isolated notes 
 
3. McGill University Master Samples 

 
 - 3 DVDs – cover orchestral instruments + percussion 
 - Available through select libraries – dataset owned by Garritan 
 
4. MAPS samples 

 
 http://www.tsi.telecom-paristech.fr/aao/ 
 - Part of MIDI-aligned Piano Sounds database (MAPS) 
 - Isolated notes, random chords, usual chords 
 - 9 different piano models (virtual pianos + Disklavier) 
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Datasets (4) 

Polyphonic datasets – music pieces 
 
1. RWC database - classical subset 

 
  https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-c.html 
 - 50 recordings (solo performances, chamber, orchestral music…) 
 - Non-aligned MIDI provided 
 - syncRWC annotations (through automatic alignment):  
 https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC/ 
 
2. RWC database – jazz subset 
 
 https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-j.html 
 - 50 recordings (different instrumentations/style variations) 
 - Non-aligned MIDI provided 
 - Automatically aligned MIDI (5 recordings incl. percussion): 

http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/37 
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Datasets (5) 

Polyphonic datasets – music pieces 
 
3. MAPS database 
 
 http://www.tsi.telecom-paristech.fr/aao/ 
 - 9 different piano models (virtual pianos + Disklavier) 
 - 9 x 30 complete classical pieces + MIDI ground truth 
 
4. TRIOS dataset 

 
http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27 
- 5 multitrack recordings of classical/jazz trios 
- MIDI ground truth provided 
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Datasets (6) 

Polyphonic datasets – music pieces 
 
5. LabROSA Automatic Piano Transcription dataset 
 
 http://labrosa.ee.columbia.edu/projects/piano/ 
 - Disklavier piano + MIDI ground truth (29 pieces) 
 
6. Bach10 dataset 

 
 http://www.ece.rochester.edu/~zduan/resource/Resources.html 
 - 10 multitrack recordings (violin, clarinet, sax, bassoon quartet) 
 - MIDI ground truth provided (semi-automatic) 
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Datasets (7) 

Polyphonic datasets – music pieces 
 
7. MIREX multiF0 development dataset 

 
 http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/index.htm 
 (password required – ask MIREX team!) 

 - One woodwind quintet multitrack recording + manual MIDI 
annotation 

 
8. Score-informed piano transcription dataset 

 
 http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/13 
 - 7 Disklavier recordings that contain performance mistakes 
 - MIDI ground truth for recordings + “correct” performances 
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Datasets (8) 

Melody/baseline datasets 
 
1. RWC database –popular/royalty-free/genre subsets 

 
 https://staff.aist.go.jp/m.goto/RWC-MDB/ 
 - manual melody annotations for popular/royalty-free subsets 
 - some popular/genre recordings also have aligned melody/bass 

annotations 
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Datasets (9) 

Percussive transcription datasets 
 
1. ENST-Drums 

 
 http://www.tsi.telecom-paristech.fr/aao/en/software-and-database/ 

 8-channel recordings, 3 drummers, 75min, audiovisual content 
 
2. 200 Drum Machines 

 
 http://colinraffel.com/datasets/200DrumMachines.tar.gz 
 Samples collected from 200 different drum machines 
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Datasets (9) 

Percussive transcription datasets 
 
3. DREANSS dataset 

 
 http://mtg.upf.edu/download/datasets/dreanss 
 - 22 multi-track excerpts (rock, reggae, metal…) with drum 

annotations 
 
4. IDMT-SMT-Drums 

 
 http://www.idmt.fraunhofer.de/en/business_units/smt/drums.html 

 - 95 polyphonic drum set recordings (real + synthesized) 
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Datasets (10) 

Additional datasets 
 
1. KSN database 

 
 http://hil.t.u-tokyo.ac.jp/software/KSN/ 
 - Functional harmony annotations for RWC classical files 
 
2. AIST RWC annotations 

 
 https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/ 
 - Beat/chorus annotations for RWC classical/jazz recordings 
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Evaluation Metrics 
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Evaluation Metrics (1) 

• Typically comparing piano-rolls or MIDI-like representations 
(e.g. onset-offset-pitch) 
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Evaluation Metrics (2) 

• Evaluation on: 

– Multi-pitch detection 

– Instrument assignment  
(i.e. assign each detected note to an instrument source) 

– Polyphony level estimation (e.g. [Klapuri03, Duan10]) 

 

• Evaluation methodologies: 

– Frame-based 

– Note-based 
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Evaluation Metrics (3) 

Frame-based evaluation 

 

• Comparing the transcribed output and the ground truth frame-by-
frame, typically at 10ms step (as in MIREX MultiF0 task). 

 

• Accuracy [Dixon, 2000]: 

 

 

 
–                : # true positives  

–                : # false positives 

–                : # false negatives 
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Evaluation Metrics (4) 

Frame-based evaluation 

 

• Accuracy (alternative metric – Kameoka et al, 2007): 

 

 

 
–                                                                            (# pitch substitutions) 

–                 : # ground-truth pitches at frame n  
 

• Chroma accuracy: pitches warped into one octave 

• Precision – Recall – F-measure: 

 

 
–                : # detected pitches   
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Evaluation Metrics (5) 

Note-based evaluation 

 

• Each note is characterized by its onset, 
offset, and pitch 

• Onset-only evaluation: a note event is 
considered correct if its onset is within a 
tolerance (e.g. +/-50ms) and its pitch 
within a tolerance (e.g. quarter tone) of 
a ground truth pitch 

• P-R-F metrics can be defined 

• Onset-offset evaluation: additional 
constraint for offset tolerance (e.g. +/-
50ms tolerance or offset within 20% of 
GT note’s duration) 
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Evaluation Metrics (6) 

Instrument assignment 

 

• A pitch is only considered correct if it occurs at the correct time 
and is assigned to the proper instrument source 

• Similar metrics as in multi-pitch detection can be defined 
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Public Evaluation (1) 

MIREX Multi-F0 Estimation and Note Tracking task 

 

• Subtasks: 
– Task 1: Frame-based evaluation (multiple instruments) 

– Task 2a: Note-based evaluation (multiple instruments) 

– Task 2b: Note-based evaluation (piano only) 

– Task 3: Timbre tracking (i.e. instrument assignment – not run often…) 

 

• Dataset: 
– Woodwind quintet 

– Synthesized pieces using RWC MIDI and RWC samples 

– Polyphonic piano recordings 

– New dataset for 2015  
(piano solo, string quartet, piano quintet, violin sonata) 

 

105 

Public Evaluation (2) 

MIREX Multi-F0 Estimation and Note Tracking task 

 

• Results for Task 1 (frame-based accuracy) 
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Teams 2009 2010 2011 2012 2013 2014 

Yeh and Roebel 0.69 0.69 0.68 - - - 

Dressler - - 0.63 0.64 - 0.68 

Canadas-Quesada et al. - 0.49 - - - - 

Benetos and Dixon/Weyde - 0.47 0.57 0.58 0.66 0.66 

Duan et al. 0.57 0.55 - - - - 

Fuentes et al. - - - 0.56 - - 

Elowsson and Friberg - - - - - 0.72 

Cheng et al. - - - - 0.62 - 

Su and Yang - - - - - 0.64 
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Public Evaluation (3) 

MIREX Multi-F0 Estimation and Note Tracking task 

 

• Results for Task 2 (onset/offset-based F-measure) 

 

107 

Teams 2009 2010 2011 2012 2013 2014 

Yeh and Roebel 0.31 0.33 0.35 - - - 

Dressler - - - 0.45 - 0.44 

Benetos and Dixon/Weyde - - 0.21 0.23 0.33 0.36 

Duan, Han and  Pardo 0.22 0.19 - - - - 

Fuentes et al. - - - 0.39 - - 

Elowsson and Friberg - - - - - 0.58 

Cheng et al. - - - - 0.29 - 

Su and Yang - - - - - 0.29 

Böck - - - 0.09 - 0.14 

Dessein et al. - 0.24 - - - - 

Duan and Temperley - - - - - 0.28 

Public Evaluation (4) 

MIREX Multi-F0 Estimation and Note Tracking task 

 

• Results for Task 2 (onset/only F-measure) 
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Teams 2009 2010 2011 2012 2013 2014 

Yeh and Roebel 0.50 0.53 0.56 - - - 

Dressler - - - 0.65 - 0.66 

Benetos and Dixon/Weyde - - 0.45 0.43 0.55 0.58 

Duan, Han and  Pardo 0.43 0.41 - - - - 

Fuentes et al. - - - 0.61 - - 

Elowsson and Friberg - - - - - 0.82 

Cheng et al. - - - - 0.50 - 

Su and Yang - - - - - 0.46 

Böck - - - 0.50 - 0.54 

Dessein et al. - 0.40 - - - - 

Duan and Temperley - - - - - 0.45 
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Relations & Applications to 
Other Problems 
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Relations to Other Problems (1) 

Music Source Separation 

 

• Interdependent with multi-pitch detection and instrument identification 

• Instrument identification can be improved by separating the source 
signals [Bosch12] 

• Joint instrument identification and separation [Itoyama11] 
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Relations to Other Problems (2) 

Music Source Separation (cont’d) 

 

• Concepts and algorithms from source 
separation can be utilized for AMT 
[Durrieu12, Ozerov12] 

• Semi-automatic source separation & F0 
estimation [Durrieu12] 

• But: a better source separation does 
not necessarily imply better multi-pitch 
detection! [Tavares13b] 
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Relations to Other Problems (3) 

Score following 

 

• [Arzt12]: Indentifying score position through transcription-derived pitch- 
and time-invariant features 

• [Duan11]: Use multi-pitch estimation model as the observation model of 
an HMM for score following (SoundPrism) 
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Relations to Other Problems (4) 

Score-informed transcription 

 

• Combining audio-to-score alignment with automatic music transcription 

• Applications: automatic instrument tutoring, performance studies 

• [Wang08]: Fusing audio & video transcription with score information for 
violin tutoring 

• [Benetos12, Fukuda15]: Score-informed piano tutoring based on NMF 

• [Dittmar12]: Songs2See – (based on multi-pitch detection, score-informed 
source separation, extraction of instrument-specific parameters)  
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Relations to Other Problems (5) 

Applications to Content-based Music Retrieval 

 

• Deriving high-level features for organising/navigating through audio 
collections, music similarity & recommendation 

• [Lidy07] Music genre classification by combining audio and symbolic 
descriptors 

• [Weyde14] Transcription-derived features for exploring music archives 
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Relations to Other Problems (6) 

Applications to Systematic/Computational Musicology 

 

• [Collins14]: Discovery of repeated themes and patterns from 
automatically transcribed and beat-quantized MIDI 
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Relations to Other Problems (7) 

Applications to Systematic/Computational Musicology (cont’d) 

 

• [Dixon11; Tidhar14]: Automatic estimation of harpsichord temperament – 
using a “conservative” transcription as a first step for precise frequency 
estimation. 
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Relations to Other Problems (8) 

Applications to Music Acoustics 

 

• [Rigaud13]: Joint estimation of multiple pitches and inharmonicity for the 
piano using an NMF-based model 
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Relations to Other Problems (9) 

Applications to Music Performance Analysis 

 

• [Jure12]: Pitch salience representations for music performance analysis; 
also used to assist human transcription 
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Software & Demo 

119 

AMT Software (1) 

Free software / plugins (from academic research) 
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Authors Language URL 

Benetos et al Matlab + Vamp 
plugin 

http://www.eecs.qmul.ac.uk/~emmanouilb/code.html 

Duan et al Matlab http://www.ece.rochester.edu/~zduan/resource/Reso
urces.html 

Fuentes et al Matlab http://www.benoit-fuentes.fr/publications.html 

Marolt win32 executable http://atlas.fri.uni-lj.si/lgm/transcription-of-
polyphonic-piano-music/ 

Pertusa & Iñesta Vamp plugin + online 
prototype 

http://grfia.dlsi.ua.es/cm/projects/drims/softwareVA
MP.php 

Raczyński et al R / Python http://versamus.inria.fr/software-and-
data/multipitch.tar.bz2 

Vincent et al Matlab http://www.irisa.fr/metiss/members/evincent/softwa
re 

Zhou & Reiss Vamp plugin http://vamp-plugins.org/plugin-doc/qm-vamp-
plugins.html 
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AMT Software (2) 

Commercial software / plugins 

121 

Name URL 

Akoff Sound Labs http://www.akoff.com/audio-to-midi.html 

intelliScore http://www.intelliscore.net 

Melodyne http://www.celemony.com 

PitchScope http://www.creativedetectors.com/ 

Sibelius AudioScore http://www.sibelius.com/products/audioscore/ultimate.html 

Solo Explorer http://www.recognisoft.com/ 

Transcribe! http://www.seventhstring.com/xscribe/ 

WIDISOFT audio-to-MIDI 
VST plugin 

http://www.widisoft.com/english/translate.html 

Demo 

Silvet Vamp plugin 

 

 

 

 

 

 

 

 

 

 

 

Silvet download: https://code.soundsoftware.ac.uk/projects/silvet/files 

Sonic Visualiser download: http://www.sonicvisualiser.org/download.html 
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https://code.soundsoftware.ac.uk/projects/silvet/files
http://www.sonicvisualiser.org/download.html
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Challenges and  

Future Directions 

 

123 

Challenges and Directions – Evaluation Measures (1) 

Design musically meaningful evaluation measures 

• Some notes are more musically important 

 

 

 

 

 

• Some errors are more musically annoying 

– Inharmonic errors > harmonic/octave errors 

– Wrong notes outside the scale > wrong notes within the scale 

• The annoyingness depends on the application 

– For music re-synthesis: insertion errors > miss errors 

– For music search: octave errors > semitone errors 
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Challenges and Directions – Evaluation Measures (2) 

Some ideas for designing musically meaningful measures 

• Observation approach: Analyze how music teachers grade music 
dictation exams 

– Quantitative analysis of music teachers’ evaluation measures 

– Well supported by music theory and music education practice 

– Depends on the type of music 

– Errors made by music students cannot represent errors made by 
computers 

• Experiment approach: Subjective listening tests on different types 
of algorithmically generated errors 

– Analyze correlations between the presence of errors and the listening 
experience 

– Full control and easy generation of different types of error 

– Difficult to find enough qualified subjects 
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Challenges and Directions – Musical Knowledge (1) 

Incorporating musical knowledge 

• Most existing transcription approaches are data-driven (bottom-up) 

– Caused many errors that are not musically meaningful, and hence may 
be easily avoided by incorporating musical knowledge 

• Musicians rely on musical knowledge to transcribe music 

– Key signature, scale 

– Harmonic progression, metrical structure 

– Counterpoint and other composition rules 

• Speech recognition successfully integrates acoustic model and 
language model through HMM or deep neural networks, although 
these models cannot be directly applied to AMT 

– Music is polyphonic 

– Music rhythm involves much longer temporal dependencies 

– Music harmony arrangement involves rich music theory 
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Challenges and Directions – Musical Knowledge (2) 

Existing attempts in incorporating musical knowledge 

• Blackboard architecture [Martin96; Bello03] 

– Use of competing “knowledge sources” 

– No rigorous mathematical model 

 

• Bayesian networks [Kasino98; Davy06; Cemgil06] 

– Rigorous mathematical models 

– Computationally intensive 

– Very simple musical knowledge (e.g., pitch range, pitch transition) 

 

• More recent approaches  
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Challenges and Directions – Musical Knowledge (3) 

• Chord model: chords transition 

• Note model: linear combination 
of the following sub-models: 

– Harmonic: pitch on/off based on 
underlying chord 

– Duration: pitch on/off transition 

– Voice: pitch jump 

– Polyphony: pitch on/off based on 
previous polyphony 

– Neighbor: pitch on/off based on 
the note directly below 

• All models first-order Markovian 

• 3% F-measure improvement from 
an NMF-based AMT approach 
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chords 

notes 

observ. 
salience 

[Raczynski et al., 2013] Dynamic Bayesian Networks 
 

Audio frames (93ms hop) 
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Challenges and Directions – Musical Knowledge (4) 

[Temperley, 2009] Generative models for deep and interdependent 
musical structures 

 

 

 

 

 

 

 

 

 

• Parameters are hand coded instead of learned from symbolic data 

• Preliminary results (unpublished) show 3% improvement on note-level F-
measure, using the acoustic model in [Duan & Temperley, 2014] 
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Meter, beats at 
different levels 

Harmony tends to 
change on beats; 
chord progression 

Note tends to 
change on beats; 
note pitch jump; 
streams begin and 
end 

Challenges and Directions – Musical Knowledge (5) 

Model temporal dependencies with RNN-RBM 

• 1) Product of experts [Boulanger-Lewandowski12] 

 

 

 

 

• 2) Joint optimization by I/O RNN-RBM [Boulanger-Lewandowski13] 
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Acoustic model by 
RBM [Nam11] 

Proposed 
symbolic model 

Combinations of the 
best pitch candidates 
estimated by the 
acoustic model 

RBM output features 
using [Nam11] 

Tests on mostly synthetic 
piano data 
• Method 1 achieves 1%-

10% frame-level 
transcription accuracy 
improvement 

• Method 2 achieves 4%-
30% improvement 
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Challenges and Directions – Musical Knowledge (6) 

Model music language using RNN 

• PLCA + RNN-NADE [Sigtia et al., 2014] 

– RNN-NADE is a variant of RNN-RBM, taking a pitch activity vector 
sequence as input 

– Impose RNN as a Dirichlet prior for pitch activations into the PLCA 
framework 

– 3% frame-level transcription accuracy improvement on real data 

• RNN + RNN [Sigtia et al., 2015] 
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RNN-NADE trained 
from symbolic data 

DNN or 
RNN or 
DNN+RNN 
trained from 
acoustic data 

Challenges and Directions – User Assisted Approach (1) 

User-assisted (semi-automatic) music transcription 

• What information is helpful and is easy to provide by users? 
– Key, tempo, time signature, structural information, timbre 

 

• How to make the interaction easy for users to annotate? 
– Typing information 

– Editing through graphical user interface 

– Singing/humming melodic lines 

– Playing on a keyboard 

 

• How to reduce the amount of information that users need to 
provide? 

– The system needs to learn from user annotations quickly and actively 

– An iterative approach is preferred 
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Challenges and Directions – User Assisted Approach (2) 

Existing approaches 

• Ask users to provide instrument labels for some notes to learn 
instrument models using shift-invariant NMF [Kirchhoff et al., 2012] 

• Ask users to provide transcription of some segments of the piece to 
learn a PLCA-based model [Scatolini et al., 2015] 

 

• In source separation 

– Singing voice / accompaniment separation through humming [Mysore 
& Smaragdis, 2009] 

– Music source separation with user-selected F0 track [Durrieu & 
Thiran, 2012] 

– Interactive Source Separation Editor with user selected spectrogram 
regions PLCA [Bryan et al., 2014] 
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Challenges and Directions – Non-Western (1) 

Automatic transcription of non-Western/non-Eurogenetic/traditional music 
 

• The vast majority of AMT research assumes 12 TET 

• Another assumption: monophony/polyphony (whereas in several cultures 
music is heterophonic) 

• Research on transcribing non-Western/traditional music: 
– [Gómez13]: Automatic transcription of (a capella singing) flamenco recordings 

– [Bozkurt08; Benetos15]: Pitch analysis and transcription for Turkish makam music 

– [Srinivasamurthy14]: Transcribing percussion patterns in Chinese opera 

– [Kelleher05]: Transcription & ornament detection for Irish fiddle 
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Challenges and Directions – Non-Western (2) 

Automatic transcription of non-Western/non-Eurogenetic/traditional music 
 

• DML system: 20-cent time-pitch representations for 60k recordings of the 
British Library Sound Archive (http://dml.city.ac.uk/vis/) 

• Open problems: 
– Data! (recordings & annotations) 

– Methodology: culture-specific vs. general-purpose systems 

– Prescriptive vs descriptive notation 

– Engagement from the ethnomusicology community (changing: FMA, AAWM…) 
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Conclusions (1) 

State of the field 

• Continues to attract attention in the 
MIR and music signal processing 
research communities + emerging 
topic for music language modelling 

• Performance (objective + perceptual) 
has increased over the last decade 

• Instrument- and style-specific AMT 
systems have sufficiently good 
performance for end-user 
applications 

• AMT-derived features are useful for 
computing high-level music 
descriptors 
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Conclusions (2) 

State of the field (cont’d) 

• As the scope of AMT research 
continues to grow – increasing 
number of open problems & sub-
problems! 

• Agreement that a successful AMT 
system cannot rely only on 
information from the acoustic signal. 
Input needed from: 

– Music acoustics 

– Music theory/language 

– Music perception 

• Unified methodology 
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Thanks for listening! 
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