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Introduction

AMT - Introduction (1)

Automatic music transcription (AMT): the process of
converting an acoustic musical signal into some form of music
notation (e.g. staff notation, MIDI file, piano-roll,...)

Music audio

Mid-level & Parametric representation E== = -

« Pitch, onset, offset, stream, loudness - & + - > =

* Uses audio time (ms) ‘ —_— -
e ot o a T et Pas s

Music notation W&#ﬂ e e o e e e e

* Note name, key, rhythm, instrument -

e Uses score time (beat) e e e e
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AMT - Introduction (2)

Fundamental (and open) problem in music information research

Applications:

e Search/annotation of musical information
e Interactive music systems

e Systematic/computational musicology
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AMT - Introduction (3)

Subtasks:

e Pitch detection

¢ Onset/offset detection

e |nstrument identification

e Rhythm parsing

e Identification of dynamics/expression
e Typesetting

Allegro maestoso. M.M. d-7e.




AMT - Introduction (4)

Core problem: multi-pitch detection

_‘ - -

AMT - Introduction (5)

How difficult is it?

e Let’s listen to a piece and try to transcribe (hum) the
different tracks

J. Brahms,
Clarinet Quintet
in B minor,
0p.115. 3rd
movement
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AMT - Introduction (6)

We humans are amazing!

¢ “In Rome, he (14 years old)
heard Gregorio Allegri's
Miserere once in performance
in the Sistine Chapel. He wrote
it out entirely from memory,
only returning to correct minor
errors...”
-- Gutman, Robert (2000). Mozart: ;
A Cultural Biography Wolfgang Amadeus Mozart

* Can we make computers compete with Mozart?

AMT - Introduction (7)

Challenges:

e Concurrent sound sources interfere with each other
— Overlapping harmonics: C4 (46.7%), E4 (33.3%), G4 (60%)
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e Large variety of music
— Music pieces: style, form, etc.
— Instrumentation: bowed/plucked strings, winds, brass, percussive, etc.
— Playing technique: legato, staccato, vibrato, etc.
10
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AMT - Introduction (8)

State of the Art - Limitations:

e Performance clearly below of a human expert - especially for
multiple-instrument music

e Lack of dataset size/diversity
* No unified methodology (as e.g., automatic speech recognition)

e Little input beyond CS/EE (musicology, music cognition, music
acoustics)

Automatic transcription of B. Smetana — Ma vlast (Vitava)

11

Tutorial Focus/Objectives

* Focusing (mostly) on polyphonic ‘
music transcription

e Most work on Western tonal music!

We'll try to go beyond that. —_——— ==
e Presenting an overview of  e——— & F -
representative AMT research (+ -
Os - -
related problems) G st trelert tn e
e Discussion on limitations, challenges, )gur—f & L
and future directions v :

e Resources: bibliography, datasets,
code, demos

e Tutorial website:
http://c4dm.eecs.gmul.ac.uk/ismirl5-amt-tutorial/

12
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Tutorial Outline

N

1. Introduction
. How do humans transcribe music? ‘

3. State-of-the-art research on AMT
(15t part) —_— =

Break

4. State-of-the-art research on AMT —
(2 part)

5. Datasets and evaluation measures

5. Relations and applications to other P v %
problems

6. Software & Demo

7. Challenges and research directions

8. Conclusions + Q&A

Tutorial Website:

http://c4dm.eecs.gmul.ac.uk/ismirl5-amt-tutorial/ 13

How do humans
transcribe music?
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Pitch Perception (1)

Pitch:
* That attribute of auditory sensation in terms of which sounds

may be ordered on a scale extending from low to high (ANSI)

* (Operational) A sound has a certain pitch if it can be reliably
matched to a sine tone of a given frequency at 40 dB SPL

* People hear pitch in a logarithmic scale

t—— OCTAVE —»=

Note |C3|D3|Es|F3|Ga|A3|Bs|Ca|Dal|E4]|Fa|SGalAs|Ba|Cs|Ds|Es |Fs|Gs|As |Bs

index |28 |30 |32 |33 |35 |37 |39 |40 |42 |44 |45 |47 |49 |51 |52 |54 |56 |57 |59 |61 |63
= o= e O Dl W MDD 00 WM WDl D =
WXV WOON DL ENSSHNMNT NS~
= = = W o= M ahah ™ Mo = Oh &8 MM O M~
= = g B PP YO Y O DR WD D WD P 0D O
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Pitch Perception (2)

Fundamental frequency (FO0): is defined as the reciprocal of the
period of a periodic signal.

Properties of pitch perception [de Cheveigné, 2006; Houtsma, 1995]:

e Range: Pitch may be salient as long as the FO is within about 30Hz-5kHz

e Missing fundamental: the fundamental frequency need not be present in for a
pitch to be perceived

e Harmonics: For a sound with harmonic partials to be heard as a musical tone, its
spectrum must include at least 3 successive harmonics of a common frequency

Figure:

spectrum of a C4 piano
note. The fundamental is
located at 261.6Hz.

16
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Pitch Perception (3)

e Harmonics make tones more pleasant, but may
confuse pitch perception, especially in polyphonic
settings (octave/harmonic errors)

[\ : — *5__:\_
S — :
J -E‘ S -
f 2f 3f 4f 5f e6f 7f 8f 9f 10f 11f 12f
3 1
~F—n

C2 C3 G3 C4 E4 G4 Bb4 C5 D5 E5 F#5 G5

17

Pitch Perception (4)

Relative pitch: Ability to recognise and reproduce frequency ratios
Absolute pitch: Identifying pitch on an absolute nominal scale without

explicit external reference
| shmulus input | “aﬂl W u

b Dfﬂqmw
3.

Modern theories: - |m trequency
e Pattern matching [de Boer, 1956; | Vi f10 | . IM -

Wightman, 1973; Terhardt, 1974] | it | .. |_|J
e Autocorrelation model [Licklider, "

Pitch perception theories have
informed the creation of AMT systems.

Interspika interval A

1951; Meddis & Hewitt, 1991; de Mt | ¢ 'W ime
Cheveigné, 1998] I——'—l
aulmmmm 7. IJ\J\IL yme
— —’\A/\—npul
T I i

Figure from Meddis & Hewitt, 1991 18
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Pitch Perception (5)

Pitch is not a one-dimensional entity! (low/high)
Multidimensional aspects of pitch:

e Octave similarity — helix representation [Revesz, 1954]

e Pitch distance — circle of fifths representation [Shepard, 1982]

Major

F P
. 2 15 a 1% $
- Bb,, ) D Ninos 5 D
S g b
5 SEE 3 C £8 31 A 2
N 4 £ cf 4
A -4 E
Fif_ o = SL/I”«)I; cyds 'g"?s/su =
G o D, O/6t g
e o Sk Gy/FY e

iy SEME

Human Transcription (1)

¢ Called musical dictation in ear training pedagogy

e Definition: a skill by which musicians learn to identify, solely by hearing,
pitches, intervals, melody, chords, rhythms, and other elements of music.

e Required in all college-level music curriculums; general expectation after
4-5 semesters’ training:

“they can transcribe an excerpt of a quartet (e.g. four measures) with
quite complex harmonies, after listening to it four or five times”
---- Temperley, 2013

Listening Drill - 2

Listen carefully. and determine whether

you heard a) or b). Each example will be B

played three times. Name
a b)

) -0 g )‘ = Pt . i i [} |

)L@: - P —_ !

o

1

.

-

™
—

source: http://www.sheetmusicl.com/ear.training.html

20
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Human Transcription (2)

e For accurate transcription, a great deal of practice is often
necessary!

e How trained musicians transcribe music [Hainsworth03]:

Some use a transcription aid: musical instrument, tape recorder,
software

Faithful transcription vs. reduction/arrangement
Implicitly: style detection, instrument identification, beat tracking
Process:

1. Rough sketch of the piece

2. Chord scheme / bass line

3. Melody + counter-melodies

21

State-of-the-art
research in AMT

22
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State-of-the-art Outline

1. Multi-pitch analysis
A. Frame-level
B. Note-level
C. Stream-level

2. Percussive instruments transcription

3. Towards a complete music notation

State of the Art of Multi-pitch Analysis

e Frame-level (multi-pitch estimation)
— Estimate pitches and polyphony in each

frame
— Many methods

¢ Note-level (note tracking)
— Estimate pitch, onset, offset of notes

— Fewer methods

=90
e Stream-level (multi-pitch streaming) 2 ¢, -

— Stream pitches by sources 2 70

— Very few methods

20—

Pitch (MIDI number)
P )
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00

10 15
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How difficult is it?

e |Let's do a test! Chord 1 Chord 2

q % jq %
= =
§ 3

are there? 2 3

— Q1: How many pitches

— Q2: What are their
pitches? C4/G4 C4/F4/A4

— Q3: Can you find a pitch Clarinet G4 Clarinet A4
in Chord 1 and a pitch in Viola F4

Chord 2 that are played Horn C4 Horn C4
by the same instrument?

25

Frame-level: Multi-pitch Estimation

Categorization of methods
e Domain of operation: time, frequency, hybrid
e Representation:

— Time domain: raw waveform, auditory filterbank

— Frequency domain: STFT spectrum, CQT spectrum, ERB filterbank,
specmurt, spectral peaks

e Core algorithm: rule-based, signal processing approaches,
maximum likelihood, Bayesian, spectrogram decomposition,
sparse coding, classification-based, etc.

e |terative vs. joint estimation of pitches

26
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Time Domain Methods

e Keyidea

— Harmonic sounds are periodic

— Use autocorrelation function
(ACF) to find signal period

waveform

:flmn H\mn r]\mn

ALARATUR)

0 100 200 300 400 500
. time (samples)
e Difficulty 100 ACF

— Tend to have subharmonic 200 (®)

WML

— Periodicity is unclear when 0
multiple harmonic sounds are -100—\WUV UVVV VUUV VV
m|Xed 0 100T 300 400 500
Iag (samples)
period

Figure from [de Cheveigné & Kawahara, 2002]

27

Time Domain - Autocorrelation
[MeddlS & Hewitt, 1991] (ACF)
Detailed simulation of =} Periodiciy deiection ]
. 8
human auditory system e iEe== I
: g e B

— Outer- and middle-ear freq. put| £ ¢ |BE[g T 3 T
attenuation effect g= 2 %__HJ‘ o |

E3 TIIT T11
— ~100 channels with critical e b g ]
bandwidth = —

. ‘ (11}

— Inner hair cell response Cross-channel summation

Simplified version
— Only 2 channels

— Enhanced SACF: remove
SACF peaks due to integer
multiples of periods

Figures from [Tolonen & Karjalainen, 2000]

[Tolonen & Karjalainen, 2000] Summary ACF (SACF)

Input L
—= Pre-whitening x

X high
Highpass Half-wave rect. Periodicity %
at | kHz Lowpass filt. detection n
Lowpass X jow Periodicity
at | kHz detection
I »| SACF Enhanced
Enhancer SACF
' 28
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Time Domain — Adaptive Oscillators

[Marolt, 20041 A single oscillator

INPUT SIGNAL  OSCIL. OUTPUT OSCIL. FREQ.
I T 441

e Oscillator
— Parameters: freq. and phase

/

-

AMPLITUDLE

e Adaptive oscillator L u“ | o2 Al aaolhe -
— Adapts its freq. and phase to O TME® 1 0 meEm 1 0 meEe !
input signal An oscillator network
e Oscillator networks FREQUENCY CHANNELS
S

— Each network tracks a group

2] e e
v

of harmonically related
partials
— In total 88 networks for 88

pitches
Pros: good performance on piano
Cons: may not deal We” Wlth 4 NETWORK OF ADAPTIVE OSCILLATORS y,
frequency deviation and A TRENGIR OF A GROLD
modulations lor‘ PARTIALS (f.nf)

29

Time Domain — Probabilistic Modeling (1)

e Harmonic model [Walmsley et al., 1999]

#notes #harmonics Harmonic Gaussian
amplitude noise (i.i.d.)

xK Mk/ / and phase\ ‘
Z Z Am cos(mwo,kt) +Lm sin(mwo,kt) + v,
k=1m=1 \ o /

— Parameters: K, {My}, {am}, {Bm}, {wo x}, variance of v,

— Impose priors on parameters

— Bayesian inference by Markov Chain Monte Carlo (MCMC)
Pros: rigorous mathematical mode

Cons: computationally expensive; purely harmonic model
30
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Time Domain — Probabilistic Modeling (2)

e A more detailed model [Davy & Godsill, 2003]

K M. 71

Yt = Z Z Z (I.I\'.n.'.i(:";)if COs [(7” + (Sfr.m}wll..ﬂ't]

k=1 m=1 i=1
Allows harmonics to/ \ Deals with
change amplitude o - . ) detuning
within a note + bk.m.i@hf s [(TH + dff.m)wll.f.'t] + Ut
— Auto-regressive model for v;.
Ground truth Pitch estimation

Pros: Promising result ,'_",_':':':;::':':ii"":':'::':”:”:” fwm
on real recording R e e o
(#nOteSKiS provided) K N Y e —— e ——
Cons: computational ; e n__,_mm
IntenSIVe ;‘\. ....................................... s— f\-t —_— -‘---

S '['sinn:- (.4-) e o "I'i:m:'e(.\]- ’ ?:1 I

Time Domain — Probabilistic Modeling (3)

e Damped note model state waveform

[Cemgil et al., 2006] @7

Note activity !
(sound/mute)

state

j-th note
waveform

Audio mixture

32
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Magnitude of Z(k)
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Frequency Domain Methods

e Keyidea _
) S 40

— Each pitch has a set of 2 5
harmonics £ o

— Recognize the harmonic =20

patterns 0 1000 2000 3000 4000 5000
Frequency (Hz)

60
- )
e Difficulty s
— Tend to have harmonic g
©
errors = “
— Harmonic amplitude varies 0 1000 2000 3000 4000 5000

Frequency (Hz)
— Overlapping harmonics

Iterative Spectral Subtraction

8 8 &

=

Estimate number o,
concurrent sounds
and iterate

acoustic
mixture signal

[Klapuri, 2003]

' Predomi- Spectral Remove

nant-FO smoothing detected
suppression estimation |\ Jordetected sound from
the mixture

g 12

18
16 ¢ 54 24 o7 30

4

8 8

o2

1000

oo

2000 3000 4000 5000 6000 4000 5000 6000
Frequency (Hz)

(@)

Pros: good performance, simple, fast
Cons: hard to subtract the appropriate amount of energy
34
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Iterative Bispectral Subtraction

Bispectrum

[Argenti et al., 2011]

— 2-D Fourier transform of the 3™ order cumulant of the signal, or

equivalently, B, (f1, f2) = X(f)X(f)X"(f1 + f2)
— Account for nonlinear partial interactions

Algorithm

1.

2.

Calculate Constant Q
bispectrum of signal
Perform 2-d correlation
between bispectra of
signal and a template
Highest correlation gives
a pitch estimate

Cancel entries of signal
bispectum corresponding
to harmonics of the pitch
Repeat 2-4.

frequency f2 (Hz)

900 -

800

700 |-

600 -

500 |-

400 -

300

Audio Signal Magnitude Bispectrum

T T T
D, (293 Hz) Peaks N

4 ) ’
(O

A, (220 Hz) Peaks -

P 5 S
4 AW Y

L i i i i i i
300 400 500 600 700 800 900

frequency fv (Hz)

Spectral Peak Modeling

Peak picking

Choose pitch candidates

— Around first several peaks
and their integer fractions

Calculate salience (or

likelihood) of each pitch or
each combination of pitche

Choose the best ones

Pros: intuitive; works well; more

60

N
[= =]

Amplitude (dB)

Y
S

-40

compact representation of audio

Cons: sensitive to peak detection;

has difficulty in dealing with

sources with different loudness

I
(=]

R

rT 'ﬁ‘“ |

1000 2000 3000 4000 5000
Frequency (Hz)

Figure from [Duan et al., 2010]

36
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Spectral Peak Modeling — Rule-based

e Rule-based approaches

— [Pertusa & Ifiesta, 2008]
e Salience(pitch) = Loudness(partials) * Smoothness(partials)
e Salience(pitch combination) = Sum(saliences of pitches)

— [Yeh et al., 2010]

¢ Salience of a pitch depends on harmonicity, smoothness, and
synchronicity of its partials

® Pros: fast, work well

e Cons: rule-based methods may be hard to adapt to other
instruments

37

Spectral Peak Modeling — Maximum Likelihood (1)

Pros: balances harmonic and subharmonic errors
e [Duanetal.,, 2010] Cons: soft notes may be masked by others

p(0|0) — p(opeakle) D Onon—peakle)
/ ('\

Probability of observing these Probability of not having any harmonics
peaks: (fi, ar), k =1,..,K. in the non-peak region
i
PitchT T T
hyp True pitch True pitch  Pitch hyp
p(0P¢3|0) is large p(0Pe3k|@) is small
p(0r°n-peak|g) is small p(0"°n-Peak|g) is large
38
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Spectral Peak Modeling — Maximum Likelihood (2)

e [Emiya et al., 2007]

Pros: balances harmonic
and subharmonic errors

Auto-Regressive (AR) model for harmonics of pitches Both tend to
Moving-Average (MA) model for residual be smooth!

dB

Harmonic error — 1
. —gop| B Hset L
+ AR model fits well T Rl
« MA model doesn't _jpglim= A i i ; ;
0 2000 4000 6000 8000 10000

Subharmonic error
«  MA model fits well

(Hz)

« AR model doesn't T

Cons: the assumptions °

- _
on spectral smoothness  -eof . = K0 D po

is not always true (2R

-+ Residual

" " N i
0 2000 4000 6000 8000 10000
f (Hz) 39

Spectral Peak Modeling — Maximum Likelihood (3)

e [Peeling & Godsill, 2011]

function

Assumes that the number of partials of the i-th note is a non-
homogenous Poisson process on the frequency axis with a rate of
A;(f), which is the expected partial density at frequency f

Assumes that concurrent notes are independent

So the number of partials of all notes is a superposition of multiple
independent Poisson processes, hence another Poisson process with
rate A(f) = X; 4:(f)

Models 1;(f) with a GMM, with Gaussians centered at harmonics of
the i-th note

Likelihood ) e [ — Frax N
p(fle'-af.f\-,NM%f))e p( /0 )\(f)df) EA(fn.)

Frequency and Rate function,

number of dependent on Pros: mathematically interesting
detected partials pitch hypotheses Cons: strong assumption
(peaks) 40
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Full Spectrum Modeling — Probabilistic (1)

Key idea: view spectra as (parametric) probabilistic
distributions

Density

e Each note = tied- Gaussian .
Mixture Model (tied-GMM) w B P

AN
Hy M +0, - u +o, Frequency

M
My (z) = Z TremN (z|uk + om,A;l)

m=1

¢ Signal = Mixture of GMMs Jk !} jk | @
N/

Density

K
JMd(ﬂ:) = Z Trdki\/[k (I) @Mix two GMMs S
k=1 o )
Pros: flexible to incorporate priors on R
parameters
Cons: doesn’t model inharmonic and I Frequensy
transients; many parameters to optimize Figures from [Yoshii & Goto, 2012]
41

Full Spectrum Modeling — Probabilistic (2)

e PreFEst [Goto, 2004]
— Gaussian models are given; estimate Gaussian mixing weights
and note mixing weights
e Harmonic Clustering (HC) [Kameoka et al., 2004]
— Estimate all parameters

— Use Akaike Information Criterion (AIC) to decide number of
notes

¢ Infinite Latent Harmonic Allocation (iLHA) [Yoshii & Goto,
2012]
— Model allows arbitrary number of Gaussians and notes

— Automatically decide their numbers using non-parametric
Bayesian inference

42
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Full Spectrum Modeling — Probabilistic (3)

Non-parametric model [Smaragdis & Raj, 2006]
* Probabilistic Latent Component Analysis (PLCA)

Sound quanta ___, P.(f) zZP(flz)Pt(z)

distribution at t

i :
T
RIS I
{ IR
Dictionary J T
Elements 5 31 37 9
P(fl2) ] 14
2333
L 3 U
Time-invariant 7 —— Activation
squqd qt_Janta . r - <« Wweights
distribution for P (2)
each component T .
He Distribution of
ot components

Spectrogram Decomposition (1)

¢ Non-negative Matrix Factorization (NMF) applied to magnitude
spectrograms [Smaragdis03]

¢ Related methods: Probabilistic Latent Component Analysis (PLCA),
sparse coding

700

¢ Dictionary can be
fixed or adaptive

6001
500 |
4001

a0f T - - —

w (frequency)

200

100 S _

05

S

z (component)
|
|
|
|
z (component)

172 O S R G (e 1 - RS e Sl
100 200 300 400 500 600 700 05 ] 15
w (frequency) t (sec)

28/10/2015
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Spectrogram Decomposition (2)

28/10/2015

matrix factors W and H such that:

NMF model: Given a non-negative matrix V find non-negative

V ~ WH

AMT Models with Fixed Templates
e W: note dictionary; H: pitch activation

e Keep W fixed, only estimate H (e.g. [Dessein10; Aril12])

Pitch activation

Dictionary
500 1 100
150 w
o
§' 350 - = 0
i 300 - 'é_ 70| e
& o o o g w
éo 200 -~ = w
3 10
100 o
50 30
W a0 50 6 10 s w1
MIDI pitch

8 12 16 20 240

Spectrogram Decomposition (3)

28

Fixed Templates (continued)
e PLCA + eigeninstruments [Grindlay11]
e PLCA + sparsity/continuity priors [Bay12]

e Pros: dictionary incorporates prior knowledge on instrument model +
acoustics, good performance in a source-dependent scenario
e Cons: models perform poorly if test audio doesn’t match the dictionary

Hierarchical Eigeninstrument Model

Probabilistic
Training Instruments Eigeninstruments

(optiofal init.)

HPET Model

P(p.t|s)

Post
Processing

46
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Spectrogram Decomposition (4)

Adaptive templates

Bayesian NMF +
harmonicity/smoothness
[Bertin10]

NMF with adaptive harmonic
decomposition [Vincent10]

PLCA with template adaptation
[Benetos14]

Pros: dictionary closely matches
test audio, potentially improving
AMT performance

Cons: strong assumptions (e.g.
strictly harmonic spectra, lack of
transient components, relying
on a good initial estimate...)

0.5

=}

pif
1

0.5

10°
Nn.l.f (EmJ:O.TlU)

0 A lt_ﬁ.
Z)

10*

Np.z,f (Epj.2=0.029)

05

L

L,
10 10t 10°

L,

10°

Np,lf (EpJJ:O'UM)

Np. o (Epj. 4:&00])

10 10

N

|

10°

10° 10 10°

10° 10*

47
Spectrogram Decomposition (5)
Convolutive models (NMD, Shift-Invariant PLCA)
¢ SIPLCA —fixed templates [Benetos12]
¢ SIPLCA — adaptive templates [Fuentes13]
e Pros: can model tuning changes & frequency modulations
e Cons: computationally expensive; no improvement over linear
models in some cases (e.g. tuned piano)
04
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Spectrogram Decomposition (6)

28/10/2015

frequency/kHz

Sparse coding

¢ Key concept: spectral templates are sparse; pitch activation is

sparse for each time frame
¢ Sparse coding [Abdallah06]
e Group sparsity [O’'Hanlon12]

¢ Pros: handling large dictionaries, computationally efficient methods
e Cons: little support on incorporating prior knowledge

Dictionary matrix A

component

Output (sequence of vectors §)

w0
S

s
=]

n
>

&

=

4 6 8 10
time/s

Classification-based Methods

e Basicidea

— View polyphonic music transcription as multi-label classification
— Each quantized pitch (e.g., MIDI number) is a class
— Positive/negative examples: frames contain/not contain the

pitch
e Pros:
— Simple idea

— Requires no acoustical prior knowledge

e Cons:
— Only outputs quantized pitch

— Requires lots of training data given the many class combinations
— May overfit training data; hard to adapt to different

datasets/instruments

50
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Classification-based Methods (1)

[Marolt, 2004]

e 76 neural networks for piano notes (except for the lowest 12 notes)
¢ Input: output of partial tracking networks across multiple frames

neural network model correct  spurious
time-delay NNs 96.8% 13.1%
Elman's NNs 95.2% 13.5%
multilayer perceptrons 96.4% 16.0%
RBF NNs 88.2% 14.6%
fuzzy-ARTMAP 84.1% 18.9%

e Combined with onset detection modules to achieve note-level

transcription - SONIC

51

Classification-based Methods (2)

[Poliner & Ellis, 2007]

e 87 independent one-vs-all
SVMis for piano (except for
the highest note C8)

e Trained on MIDI-
synthesized piano
performances

¢ Features: magnitude

spectrum within
0-2 kHz, for notes < B5 (988Hz)
1-3 kHz, for C6 < notes < B6
2—-4 kHz, for notes > C7 (2093Hz)

¢ HMM smoothing for each
class independently

MIDI note

Time (s)
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Classification-based Methods (3)

[Nam et al., 2011]
¢ Automatic feature learning by deep belief network (DBN)

Feature — Post-
extraction Clasisél{’;ﬁ)tlon processing
(DBN) (HMM)
Single-Note Multiple-Note
Training Training

Output [ L N X

Linear

- S| (89077069 IR TL

2 hidden layers with i 006060 .. 0000600
256 nodes each Hidden Layers

Layers 000" ooo 000 ooo

Input: magnitude
(00000 ooo Iput (OO0 000 ooo

spectrum

Fine tune DBN Fine tune DBN
weights for each weights for all
note separately notes together
53

Classification-based Methods (4)

[Bock & Schedl, 2012] for piano transcription

e Bidirectional long short-term memory (BLSTM) network
— Input layer: spectrum and its first-order time difference
— 3 bidirectional hidden layers, 88 LSTM units each
— 88 units in the regression output layer
— Thresholding and pick picking for onset detection

Spectrogram Semitone
46.4ms Filterbank

. BLSTM ‘ Note Onset &
udlo Network Pitch Detection "’ Notes

Spectrogram Semitone
185.5ms Filterbank

e Pros: output notes jointly

54
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Classification-based Methods (5)

[Raphael, 2002] for piano transcription
¢ Hidden Markov model (HMM)
— States: note combinations

— Observations: spectral features (energy, spectral flux, mean and
variance of frequency distribution in each frequency band)

e Training: unsupervised training using piano audio and non-aligned
MIDI scores (Baum-Welch algorithm)
— Initialize states using score
— lteratively adjust model parameters and states

e Recognition: state space is huge, even after some pruning!
— Restrict state space by multi-pitch estimation using observation model
— Viterbi decoding

Pros: captures note transitions

Cons: computationally expensive
55

Other Interesting Approaches

Specmurt Analysis: IFT of log-freq power spectrum [Saito et al., 2008]
e Assumes a common harmonic structure of all notes
¢ lterative estimation of u(x) and h(x)

fundamenial frequency common harmonic structure patiern observed spectrum
distributo

u(x) h(x)
Spectrum _
domain

1

Specmurt
domain

e Harmonic structure is shared by all notes in the same frame, but
not necessarily in different frames, in contrast to many other
methods e.g., NMF methods

56

28/10/2015

28



Other Interesting Approaches

28/10/2015

¢ Combining spectral and temporal representations [Su & Yang,

2015]
:
Peaks in Iog- ) e “_en_“_ Spectral representation U(f)
amplitude spectrum Tt I B
(harmonic errors) } _’j_jjﬁ “““““ S j[l
[1 | e O
0 I 4 f
. [_®
Peaks in . - -] Temporal representation V(1/f)
autocorrelation ; M
function 7T |
(subharmonic ﬂ( [ / S ]
€errors) o ” TT ! r

¢ Rules are designed to find FOs that have a prominent harmonic

series in U(f) and a prominent subharmonic seriesin V(1/f)

State of the Art

57

e Frame-level (multi-pitch estimation)

— Estimate pitches and polyphony in each
frame

— Many methods

¢ Note-level (note tracking)
— Estimate pitch, onset, offset of notes
— Fewer methods

=90
e Stream-level (multi-pitch streaming) 2 ¢, -

: 2 70/ e ) S |
— Stream pitches by sources = 70:_.:,-:;{ i e T
S 60r s - i hes © e |
— Very few methods e R Vet =g
§80- o s -

a - - - - -
400 5 10 15 20 25

Time (second)
58

29



28/10/2015

Note Tracking

¢ Onset detection followed by multi-pitch estimation between
onsets

— [Marolt, 2004; Emiya et al., 2010; Grosche et al., 2012;

O’Hanlon et al., 2012; Cogliati & Duan, 2015a]

— Can be sensitive to onset detection accuracy

* As post-processing of frame-level pitch estimates
— Form notes independently by connecting nearby pitches

e Ignores interactions between simultaneous pitches

— Consider interactions between simultaneous pitches

e Directly from audio

59

Frame Level = Note Level (1)

e Based on pitch salience/likelihood/activations

400

350

300

250

200

150

100

— Thresholding, filling, pruning: [Bertin et al., 2010; Dessein et al.,
2010; Carabias-Orti et al., 2011; Grindlay & Ellis, 2011; Bock &
Schedl, 2012; Fuentes et al., 2013; Weninger et al., 2013]

— Median filtering: [Su & Yang, 2015]

s0 |
70+
60 |
— - . 50 |- - — — -

- " 10 b
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—_ 20t

1wk

1000
t (10ms hop)

500 1000
& {10ms hop)

Figure from [Benetos & Dixon, 2013]
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Frame Level = Note Level (2)

e Based on pitch salience/likelihood/activations

— HMM smoothing: [Ryynanen & Klapuri, 2005]
Model each note with a note event HMM (3 states)
Observation: pitch deviation, pitch salience, onset strength

NOTE EVENT
HMM

Model silence with a silence HMM (1 state)

Model transition between notes<—>notes and
notes <> silence with a musicological HMM
¢ Note transition is key-dependent
* Note sequence: starts with silence>note and ends with note—>silence

e Greedy iterative algorithm to find multiple note sequences
61

Frame Level = Note Level (3)

Problems of forming notes independently

e Contains many spurious notes caused by consistent MPE
errors (usually octave/harmonic errors)

e Often violates instantaneous polyphony constraints

Results from the “connect-fill-

prune” approach Ground-truth

90 90
- Ld
s L
.80 . ) _80 ,
b - oo o °° 6 0.0-’ O 0=
O O
ET0/0%e o\ T T T e ET0 e Lo T Ty
g | o e ¥ O b g S o o~ L I N et
= 50lo " 69 *— LS = 50 lom-d—g-0—a—0 L ey Oy
aQ 60 ™ o ‘-%o- a 60 o— @ o’"o—
[ [ L
%50 o-"'b._ oo .5 O %50 o-"'b.. Lol bt o"h._o—
§ Lol b § o~ o
B 40} o~ ¢ & & 40
300 2 4 6 8 10 300 2 4 6 8 10
Time (Second) Time (Second)
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Frame Level = Note Level (4)

e [Duan & Temperley, 2014]

considering note interactions
Pitch & Polyph
e ) o;.tp ony Multi-pitch
Estimation —
Stage 1: likelihood
Multi-pitch
Estimation Pitch
Refinement Single-pitch
likelihood - _ N
77777777777777777777777 _ 8ol T T —
Eromnend T e
Note Formation Seo — o = R
Stage 2: = e —
Preliminary & 4o = . - =
Note Tracking e & Pramin Note 205 3 f‘.‘me(sgmd)a 0
s 8 likelihood 1
,,,,,,,,,,,,,,,, | ]
2
2| 8
Stage 3: Note Sampling g1z
Final Note 518
Tracking Transcription = g

(performed in
each chunk)

Maximum Likelihood
Transcription

likelihood

[Kameoka et al., 2007]

¢ Harmonic temporal
structured clustering
(HTC)

Activation of
Mixture
spectrogram variables)

}

}
ij mg(x, D)W (x, t) log %L x
\

Source -

signal

e EM algorithm

sources (latent

parameters

U, Note model

Energy density

V

Log-frequency

adi

energy

=
o
=

Q
[=4
3
(0]

N R S R R S R——
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Note Tracking from Audio Directly (2)

[Berg-Kirkpatrick et al., —
2014] -
. m;I:I] @__@ % Note Ex
* An NMF-like approach for | |51l A p—01- |
piano transcription E“““]‘““ Par . A“‘ _
cavelope ams ote Activation
— Each note is modeled by . . .(_4‘..‘ A~/
a spectral profile and an _ ) | e |
activation envelope -
— Duration and global p 'F_ .__.(H
velocity of activation ) = =
envelope is generated N e
from an HMM with two Spectrogram
states (play and rest)
e Spectral profiles and @ . =
activation envelopes are R =
initialized using other
pianos

Component Spectrogram

Spectral Params

freq
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Note Tracking from Audio Directly (3)

[Ewert et al., 2015] for piano transcription
¢ Model each note as a series of log-freq magnitude spectra (states)

State space

of a note
Silence Minimun note length = Ty
Mixture spectrum = Z spectrum(state) * activation
88 notes
unknown

¢ Too many state combinations!
e Greedy algorithm
— Step 1: Estimate all state sequences for each note independent

— Step 2: Decompose mixture spectrum into active notes to estimate

activations
66
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Note Tracking from Audio Directly (4)

[Cogliati et al., 2015] for piano transcription
¢ Time domain convolutional sparse coding

0.1
Note activation weights  Sparsity __»»_H
(i.e., the transcription) regularization os
0 . X .
2 o5f

de*mm_s +)\Z”mm”1 : 9%

m 2 m osF
&
0

Note templates  Music signal to o o8 ‘ w2 28 8 38 4
(pre-recorded)  be transcribed

1
arg min—
{em} 2

05
)
(V]

e Pros: high accuracy and onset precision 07:°_ 05 T s @ a5 3 35 4
e Cons: piano/environment-dependent; : | I R
doesn’t estimate offset C T Y g
67
State of the Art

e Frame-level (multi-pitch estimation)

— Estimate pitches and polyphony in each
frame

— Many methods

¢ Note-level (note tracking)
— Estimate pitch, onset, offset of notes
— Fewer methods

7—\90 - T e " .
e Stream-level (multi-pitch streaming) 2 ¢, - Lo -
Py S
— Stream pitches by sources 5 70;.:.-3:; - :f.‘,.'g',:.;_.:.’;.._-_;.-.__
— Very few methods N Tt~ el
50 S e -
T ==, - == - -
400 5 10 15 20 25

Time (second)
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Multi-pitch Streaming (Timbre Tracking)

e Supervised

— Train timbre models of sound sources
— Apply timbre models during pitch estimation: [Cont et al., 2007,

Bay et al., 2012; Benetos et al., 2013]

— Classify estimated pitches/notes: [Wu et al. 2011]

e Supervised with timbre adaptation

— Adapt trained timbre models to sources in mixture: [Carabias-
Orti et al., 2011; Grindlay & Ellis, 2011]

e Unsupervised

— Cluster pitch estimates according to timbre: [Duan et al., 2009,
2014; Mysore & Smaragdis, 2009; Arora & Behera, 2015]

69

Timbre Tracking — Unsupervised (1)

[Duan et al., 2009, 2014]
¢ Constrained clustering
— Objective: maximize timbre
consistency within clusters
— Constraints based on pitch
locations: must-links and cannot-
links
e Timbre representation: harmonic
structure feature

¢ lterative algorithm: update
clustering to monotonically
decrease objective function and
satisfy more constraints

Magnitude (dB)

60

40
20
0
20}
0 500 1000 1500 2000 2500 3000
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>
|t ! rrrnl I H
(O]
=] 11 * * g *
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o—o—° —e | ¥ n
Time
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Timbre Tracking — Unsupervised (2)

[Arora & Behera, 2015]
e Constrained clustering

— Objective: maximize timbre consistency within clusters

— Constraints based on pitch locations: grouping constraints (i.e., pitch
continuity) and simultaneity constraints (i.e., simultaneous pitches)

e Timbre representation: MFCC
e Clustering algorithm: hidden Markov random field

my,

t o o
- e - o
[ B —
Pi| e » P o
L 4 t L 4
- 222 P i S & —,e,;‘,,‘,, -4
e * - : P e 4
1 Observed 1~ Hidden
" Field Field
Polyphonic
Signal | MFCC’s Growp |
e pica | o Object
| "| formation
71
Timbre Tracking — Unsupervised (3)
[Mysore & Smaragdis, 2009] for relative pitch tracking
e Shift-invariant PLCA on constant-Q spectrogram
— Assumption: instrument spectrum shape invariant to pitch
— Constraints: 1) note activation over frequency shift is unimodal; 2)
note activation over time is smooth
e Can be viewed as a pitch clustering algorithm
3
L
* Pros: pitch estimation and ] —_—
timbre tracking are performed | — —
at the same time .
+ Cons: does not recognize the —
absolute pitch _ e =
72
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State-of-the-art:

Transcribing Percussive
Instruments

JJJJJJJ ‘lé_iii

)
==

—g—

crash cymbal hi-hat open closed  ride ride tom1 tom2 snare cross floor kick1l kick2
choke hi-hat  hi-hat bell stick
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Percussive Instruments Transcription (1)

e Core application: transcribing drum kit sounds

e Literature:
— Transcribing solo drums
— Reducing percussive sounds for transcribing pitched sounds
— Transcribing drums in the presence of pitched sounds
— Transcribing drums & pitched sounds

74
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Percussive Instruments Transcription (2)

¢ [Gillet and Richard, 2008]:
combines information from the
original music signal and a drum
track enhanced version
obtained by source separation

e Large set of features (temporal,
energy, spectral, perceptual...)

e Drum classification using C-
support vector machines (C-
SVM)

e Separation by harmonic/noise
decomposition and
time/frequency masking

Music signal

Drum enhancement

( Onset detection J ( Onset detection J

( Fusion of onset candidates

( Joint features vector ]

Feature selection [#] Bass drum classifier

Feature selection

v v
-'( Feature extraction J ( Feature extraction }-
v v

Feature selection [#Hi hat drum classifier

Snare drum classifier
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Percussive Instruments Transcription (3)

models (HMMs)
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[Paulus and Klapuri, 2009]: using a network of connected hidden Markov

HMMs are used to perform the segmentation and recognition jointly
Features: MFCCs + temporal derivatives
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Percussive Instruments Transcription (4)

Spectrogram decomposition approaches

[Lindsay-Smith et al, 2012]: convolutive NMF with time-frequency patches

[Dittmar and Gartner, 2014]: realtime transcription + separation with NMF
and semi-adaptive bases

[Benetos et al, 2014]: transcribing drums + pitched sounds using
supervised PLCA

" !

Groove
Onsets 5
! File
bbbl bl J ‘ 1
\ .
—s |
.‘ i‘gu:ﬁ
‘. Convolutive l L > | PRF score
- NMF > [ ——
1 optimisation l
s — . Generated
| groove file
_ﬂ_ﬂ_‘tﬂ_lﬁ

Envelope
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Percussive Instruments Transcription (5)

Discussion

Good performance for drum transcription in a supervised scenario, even
in real-time applications

Temporal accuracy needed is higher compared to pitched sounds!
Source adaptation: significant improvement, but more work needed for
handling dense drum polyphony & complex patterns

Open problem: transcribing both drums & pitched sounds (also: lack of
data for evaluation!)

Hi-hat

X

-
X
L 154
3
L1

Snare

& [ 4 & & Kiek

i)
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State-of-the-art:
Towards a Complete
Music Notation

EEErLEe e
T == =

79

Towards a complete music notation (1)

Current AMT systems can (up to a point!):

Detect (multiple) pitches, onsets, offsets
Identify instruments in polyphonic music
Assign detected notes to a specific instrument

Also, some systems are able to:

Detect & integrate rhythmic information
Detect tuning (per piece/note)

Extract velocity per detected note

Transcribe fingering (for specific instruments)
Quantise pitches over time/beats

Significant work needs to be done in order to extract a complete score

80
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Towards a complete music notation (2)

Dynamics

[Ewert11]: extracting note intensities in a score-informed scenario.
Mapping with MIDI velocity information.

[Kostal4]: Mapping between SPL and dynamic markings in the score
Open problems:

— Evaluation on intensity/velocity detection for AMT systems

— Mapping between AMT intensities -> MIDI velocities -> dynamic markings

— Datasets with audio + MIDI with velocity info + dynamic markings

- L~ e
T e R e - )
T e
E ¥ F :
- . - 75 3 5 ; s s
= =
G#5 Ga5
- o = 1
Fo5 Fas
= =
Es [ — 4 ES [ — »
o e — 05 - E—
cs [} | 12 cs 1 =1 12
== = o= =
™ ™
- w \ - e ,
Gad G
Fs Fas
0.8 0.8
£ — £ E——
o ——— —
C4 E— G4 —
e 04 ae 04
8 B 2 3 a5 4 81

Towards a complete music notation (3)

Rhythm quantisation

[Collins14]: Combines multi-pitch detection with beat tracking for creating
beat-quantized MIDI (goal: discovery of repeated themes).

[Ochiail2]: Best structure modelling within an NMF-based multi-pitch
detection system.

Open problems:

— Joint estimation of rhythmic
structure and pitches

Power density

— Exploit onset detection

— Evaluation of beat-quantized
outputs; comparison with
scores?

Time

Tn\"‘d——/.‘,;u\"m l—/ﬂh»; Time
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Towards a complete music notation (4)

Fingering / string detection

[Barbancho12]: extracting fingering configurations automatically from a
recorded guitar performance (formulated as an HMM).

[Maezawa1l2]: violin fingering transcription (formulated as a GMM-HMM)
[Dittmar13]: real-time guitar string detection; feature extraction from
multi-pitch pre-processing step & SVMs for classification.
Open problems:

— Instrument model adaptation

— Joint estimation of fingerboard location and fingering

— Integration into a general-purpose AMT system

(P1) {P2) 5 (P3) o (P4) (P5)
T M0 e 9
[ x| ol® [o® 'Y (YY)
T T T
c, c4', D# D E, F, G A, AH', B’
i, G 83

Towards a complete music notation (5)

Computer Music Engraving / Typesetting

Various software tools:
Sibelius, MuseScore, Finale, LilyPond, MaxScore, ScoreCloud...

Most literature from the point of software development — little
information on objective/user evaluation

Unknown performance on engraving “noisy” scores from AMT systems

MuseScore-generated score of a MIDI transcription (MAPS_MUS-mz_333_3)

Ve o Tl ) s [l A T,
S e T T
9 -3 ‘__,iv‘ vz\j iv::% ..;‘-:3 ‘_o - _# V:ﬁ

Synthesized MIDI:
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Datasets

85

Datasets (1)

e Hard to come by!

¢ Annotations can be generated:

Automatically (e.g. from a Disklavier piano, or by single-pitch detection on
multi-track recordings)

Semi-automatically (e.g. manual corrections from FO tracking or alignment)

Manually (e.g. annotating each note, playing back the music on a digital
instrument [Sul5b])

e Dataset types:

el

Polyphonic

Melody/baseline

Percussive

Additional resources (e.g. chord annotations)

86
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Datasets (2)

Polyphonic datasets — chords/isolated notes

1.

UIOWA Musical Instrument Samples

http://theremin.music.uiowa.edu/MIS.html

- mono/stereo recordings for woodwind, brass, and string -
instruments + percussion (isolated notes)

RWC Musical Instrument Sounds
https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html

- Isolated sounds for 50 instruments (incl. percussion)
- Covers different playing styles, dynamics, instrument models

87

Datasets (3)

Polyphonic datasets — chords/isolated notes

3. McGill University Master Samples

- 3 DVDs — cover orchestral instruments + percussion
- Available through select libraries — dataset owned by Garritan

MAPS samples

http://www.tsi.telecom-paristech.fr/aao/

- Part of MIDI-aligned Piano Sounds database (MAPS)
- Isolated notes, random chords, usual chords

- 9 different piano models (virtual pianos + Disklavier)

88
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Datasets (4)

Polyphonic datasets — music pieces

1.

RWC database - classical subset

https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-c.html

- 50 recordings (solo performances, chamber, orchestral music...)

- Non-aligned MIDI provided

- syncRWC annotations (through automatic alignment):
https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC/

RWC database — jazz subset

https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-j.html

- 50 recordings (different instrumentations/style variations)
- Non-aligned MIDI provided

- Automatically aligned MIDI (5 recordings incl. percussion):
http://c4dm.eecs.gmul.ac.uk/rdr/handle/123456789/37

89

Datasets (5)

Polyphonic datasets — music pieces

3.

MAPS database

http://www.tsi.telecom-paristech.fr/aao/
- 9 different piano models (virtual pianos + Disklavier)
- 9 x 30 complete classical pieces + MIDI ground truth

TRIOS dataset

http://c4dm.eecs.gmul.ac.uk/rdr/handle/123456789/27
- 5 multitrack recordings of classical/jazz trios
- MIDI ground truth provided
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http://www.tsi.telecom-paristech.fr/aao/
http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27
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Datasets (6)

Polyphonic datasets — music pieces

5.

LabROSA Automatic Piano Transcription dataset

http://labrosa.ee.columbia.edu/projects/piano/

- Disklavier piano + MIDI ground truth (29 pieces)
Bach10 dataset
http://www.ece.rochester.edu/~zduan/resource/Resources.html

- 10 multitrack recordings (violin, clarinet, sax, bassoon quartet)
- MIDI ground truth provided (semi-automatic)
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Datasets (7)

Polyphonic datasets — music pieces

7. MIREX multiFO development dataset

http://www.music-ir.org/evaluation/MIREX/data/2007/multiFO/index.htm
(password required — ask MIREX team!)

- One woodwind quintet multitrack recording + manual MIDI
annotation

Score-informed piano transcription dataset

http://c4dm.eecs.gmul.ac.uk/rdr/handle/123456789/13
- 7 Disklavier recordings that contain performance mistakes
- MIDI ground truth for recordings + “correct” performances
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Datasets (8)

Melody/baseline datasets

1.

RWC database —popular/royalty-free/genre subsets

https://staff.aist.go.jp/m.goto/RWC-MDB/

- manual melody annotations for popular/royalty-free subsets
- some popular/genre recordings also have aligned melody/bass
annotations
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Datasets (9)

Percussive transcription datasets

1.

ENST-Drums

http://www.tsi.telecom-paristech.fr/aao/en/software-and-database/
8-channel recordings, 3 drummers, 75min, audiovisual content

200 Drum Machines

http://colinraffel.com/datasets/200DrumMachines.tar.gz
Samples collected from 200 different drum machines
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Datasets (9)

Percussive transcription datasets

3.

DREANSS dataset

http://mtg.upf.edu/download/datasets/dreanss

- 22 multi-track excerpts (rock, reggae, metal...) with drum
annotations

IDMT-SMT-Drums

http://www.idmt.fraunhofer.de/en/business units/smt/drums.html
- 95 polyphonic drum set recordings (real + synthesized)
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Datasets (10)

Additional datasets

1.

KSN database

http://hil.t.u-tokyo.ac.jp/software/KSN/
- Functional harmony annotations for RWC classical files

AIST RWC annotations

https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/
- Beat/chorus annotations for RWC classical/jazz recordings
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Evaluation Metrics

Evaluation Metrics (1)

97

¢ Typically comparing piano-rolls or MIDI-like representations

MIDI pitch

MID! pitch

(e.g. onset-offset-pitch)

200 400 600 800 1000

1200

200 400 00 800 1000

time {10ms step)

1200

0.2100
0.2300
0.4100
0.4300
0.7900
0.8500
0.9100
0.9900
1.1500
1.4700

0.2100
0.2100
0.2200
0.2800
0.7800
0.8400
0.8900
0.8900
1.4800
1.4800

0.8000
0.7600
0.8800
0.7200
1.6800
0.9800
1.4600
1.3000
1.4400
2.0000

0.8800
0.8000
0.7700
0.8300
1.4500
1.4500
1.4500
1.4500
2.0100
2.0100

47.0000
44.0000
52.0000
28.0000
42.0000
47.0000
35.0000
47.0000
51.0000
46.0000

52.0000
47.0000
44.0000
28.0000
42.0000
47.0000
51.0000
35.0000
49.0000
46.0000
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Evaluation Metrics (2)

e Evaluationon:
— Multi-pitch detection

— Instrument assignment
(i.e. assign each detected note to an instrument source)

— Polyphony level estimation (e.g. [KlapuriO3, Duan10])

¢ Evaluation methodologies:
— Frame-based
— Note-based

99

Evaluation Metrics (3)

Frame-based evaluation

e Comparing the transcribed output and the ground truth frame-by-
frame, typically at 10ms step (as in MIREX MultiFO task).

e Accuracy [Dixon, 2000]:

A Zn, th hl]
Zn pr [Tl} + Nf” {?‘L] + Nt’P [TL}

- th [n] : # true positives

- Ny,[n]: #false positives
— Ny, [n]: #false negatives
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Evaluation Metrics (4)

Frame-based evaluation

e Accuracy (alternative metric — Kameoka et al, 2007):

5 Neegln] = Njuln] = Npp ] + Nouss 1]
Aceos = - -
>0 Nrepln)

= Naups[n] = min(Ny, [n], Ng,[n])  (# pitch substitutions)
= Nyeg[n]: #ground-truth pitches at frame n

e Chroma accuracy: pitches warped into one octave
e Precision — Recall — F-measure:

>, Niplnl] > Nepnl 2. Rec- Pre
> Mool >y Nrer ] Rec + Pre
— Ngys|n]: # detected pitches
101
Evaluation Metrics (5)
Note-based evaluation
0.2100 0.8000 47.0000
. . . 0.2300 0.7600 44.0000
e Each note is characterized by its onset, 04100 038800 52.0000
. 0.4300 0.7200 28.0000
offset, and pitch 0.7900 1.6800 42.0000
. . 0.8500 0.9800 47.0000
¢ Onset-only evaluation: a note eventis 09100 1.4600 35.0000
. . . . . 0.9900 1.3000 47.0000
considered correct if its onset is withina 11500 12400 51.0000
tolerance (e.g. +/-50ms) and its pitch 1.4700 - 2.0000  46.0000
within a tolerance (e.g. quarter tone) of
. 0.2100 0.8800 52.0000
a ground truth pitch 0.2100 0.8000 47.0000
. . 0.2200 0.7700 44.0000
e P-R-F metrics can be defined 0.2800 0.8300 28.0000
. . 0.7800 1.4500 42.0000
e Onset-offset evaluation: additional 0.8400 1.4500 47.0000
. 0.8900 1.4500 51.0000
constraint for offset tolerance (e.g. +/-  o0.8%00 1.4500 35.0000
. . 1.4800 2.0100 49.0000
50ms tolerance or offset within 20% of 14800 2.0100 46.0000
GT note’s duration)
102
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Evaluation Metrics (6)

Instrument assignment

e A pitch is only considered correct if it occurs at the correct time
and is assigned to the proper instrument source

¢ Similar metrics as in multi-pitch detection can be defined

L L L L L L L L L L L
200 400 00 800 1000 1200 1400 1600 1300 2000 2200 2400
time {10ms siep)
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Public Evaluation

104
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Public Evaluation (1)

MIREX Multi-FO Estimation and Note Tracking task

e Subtasks:
— Task 1: Frame-based evaluation (multiple instruments)
— Task 2a: Note-based evaluation (multiple instruments)
— Task 2b: Note-based evaluation (piano only)
— Task 3: Timbre tracking (i.e. instrument assignment — not run often...)

e Dataset:
— Woodwind quintet
— Synthesized pieces using RWC MIDI and RWC samples
— Polyphonic piano recordings

— New dataset for 2015
(piano solo, string quartet, piano quintet, violin sonata)

105
Public Evaluation (2)
MIREX Multi-FO Estimation and Note Tracking task
e Results for Task 1 (frame-based accuracy)
Teams 2009 2010 2011 2012 2013 2014
Yeh and Roebel 0.69 0.69 0.68 - - -
Dressler - - 0.63 0.64 - 0.68
Canadas-Quesada et al. - 0.49 - - - -
Benetos and Dixon/Weyde - 0.47 0.57 0.58 0.66 0.66
Duan et al. 0.57 0.55 - - - -
Fuentes et al. - - - 0.56 - -
Elowsson and Friberg - - - - - 0.72
Cheng et al. - - - - 0.62 -
Su and Yang - - - - - 0.64
106
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Public Evaluation (3)

MIREX Multi-FO Estimation and Note Tracking task

X

e Results for Task 2 (onset/offset-based F-measure)

Teams 2009 2010 2011 2012 2013 2014

Yeh and Roebel 0.31 0.33 0.35 - - -

Dressler - - - 0.45 - 0.44

Benetos and Dixon/Weyde - - 0.21 0.23 0.33 0.36

Duan, Han and Pardo 0.22 0.19 - - - -

Fuentes et al. - - - 0.39 - -

Elowsson and Friberg - - - - - 0.58

Cheng et al. - - - - 0.29 -

Su and Yang - - - - - 0.29

Bock = = = 0.09 = 0.14

Dessein et al. - 0.24 - - - -

Duan and Temperley - - - - - 0.28 107

Public Evaluation (4)
MIREX Multi-FO Estimation and Note Tracking task
X

¢ Results for Task 2 (onset/only F-measure)

Teams 2009 2010 2011 2012 2013 2014

Yeh and Roebel 0.50 0.53 0.56 ° ° °

Dressler - - - 0.65 - 0.66

Benetos and Dixon/Weyde - - 0.45 0.43 0.55 0.58

Duan, Han and Pardo 0.43 0.41 - - - -

Fuentes et al. - - - 0.61 - -

Elowsson and Friberg - - - - - 0.82

Cheng et al. - - - - 0.50 -

Su and Yang - - - - - 0.46

Bock - - - 0.50 - 0.54

Dessein et al. - 0.40 - - - -

Duan and Temperley - - - - - 0.45 108
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Relations & Applications to
Other Problems

109

Relations to Other Problems (1)

Music Source Separation

¢ Interdependent with multi-pitch detection and instrument identification

¢ Instrument identification can be improved by separating the source
signals [Bosch12]

e Joint instrument identification and separation [Itoyamal1l]

g § Source 1 Source 2

&)

| Source Separation |
Estimate 1 " ~a_Estimate 2
1] A
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Relations to Other Problems (2)

28/10/2015

Music Source Separation (cont’d)

e Concepts and algorithms from source
separation can be utilized for AMT

[Durrieul2, Ozerov12]

e Semi-automatic source separation & FO

estimation [Durrieul2]

e But: a better source separation does
not necessarily imply better multi-pitch

detection! [Tavares13b]

Relations to Other Problems (3)

111

Score following

e [Arzt12]: Indentifying score position through transcription-derived pitch-

and time-invariant features

e [Duanll]: Use multi-pitch estimation model as the observation model of
an HMM for score following (SoundPrism)

'Any-time' On-line Music Tracker

Instant Piece Recognizer

Note Recognizer
(On-line Audio-to-Pitch
Transcriptor)

Symbolic Music
Matcher
(Fingerprinter)

Multi Agent Music Tracking System
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Relations to Other Problems (4)

Score-informed transcription

e Combining audio-to-score alignment with automatic music transcription

e Applications: automatic instrument tutoring, performance studies

e [Wang08]: Fusing audio & video transcription with score information for

violin tutoring

e [Benetos12, Fukudal5]: Score-informed piano tutoring based on NMF

¢ [Dittmar12]: Songs2See — (based on multi-pitch detection, score-informed
source separation, extraction of instrument-specific parameters)

[

MIDI MIDI

ALIGNMENT

MIDI
SYNTHESIS

TRANSCRIPTION

PIANO-ROLL
COMPARISON

SCORE-INFORMED
TRANSCRIPTION

TRANSCRIPTION I
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Relations to Other Problems (5)

Applications to Content-based Music Retrieval

¢ Deriving high-level features for organising/navigating through audio
collections, music similarity & recommendation

e [Lidy07] Music genre classification by combining audio and symbolic

descriptors

e [Weydel4] Transcription-derived features for exploring music archives

Ve CHaRM

Mazurka  symphon; 103

http://dml.city.ac.uk/vis/
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Relations to Other Problems (6)

Applications to Systematic/Computational Musicology

e [Collins14]: Discovery of repeated themes and patterns from
automatically transcribed and beat-quantized MIDI

Tempo di Menuetto [. = 120] Q
1 T 15 H
I P/-:. - ! ¥ fﬁ' —F\- I — T —/\\. 1\'\' i mg
= *L_Ld_ LJ_’- i-_"- --' --‘ l-_.-_‘___i _i = F-;‘ = ] {1_ e e | ——
P - -
3 T 4 . . pﬁ"\l..' -J-—JJ.J-
7 \;"i 5 = P B4 £ = '| e /s } ———] I‘
p_tr Tl T
0(36) 3(39) 6 (42) 9 (45) 12 (48) 15 (51)
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Relations to Other Problems (7)

Applications to Systematic/Computational Musicology (cont’d)

e [Dixon11; Tidhar14]: Automatic estimation of harpsichord temperament —
using a “conservative” transcription as a first step for precise frequency

estimation.
0.5
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Relations to Other Problems (8)

Applications to Music Acoustics

¢ [Rigaud13]: Joint estimation of multiple pitches and inharmonicity for the
piano using an NMF-based model

T T T T
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+— Inh-NMF
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m (note in MIDI index)
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Relations to Other Problems (9)

Applications to Music Performance Analysis

e [Jurel2]: Pitch salience representations for music performance analysis;
also used to assist human transcription
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Software & Demo

119

AMT Software (1)

Free software / plugins (from academic research)

Authors

Benetos et al

Duan et al

Fuentes et al

Marolt

Pertusa & Ifiesta

Raczynski et al

Vincent et al

Zhou & Reiss

Language

Matlab + Vamp
plugin
Matlab

Matlab

win32 executable
Vamp plugin + online
prototype

R/ Python

Matlab

Vamp plugin

URL

http://www.eecs.gmul.ac.uk/~emmanouilb/code.html

http://www.ece.rochester.edu/~zduan/resource/Reso
urces.html

http://www.benoit-fuentes.fr/publications.html

http://atlas.fri.uni-lj.si/lgm/transcription-of-
polyphonic-piano-music/

http://grfia.dlsi.ua.es/cm/projects/drims/softwareVA
MP.php

http://versamus.inria.fr/software-and-
data/multipitch.tar.bz2

http://www.irisa.fr/metiss/members/evincent/softwa
re

http://vamp-plugins.org/plugin-doc/gm-vamp-
plugins.html
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AMT Software (2)

Commercial software / plugins

Name URL

Akoff Sound Labs http://www.akoff.com/audio-to-midi.html

intelliScore http://www.intelliscore.net

Melodyne http://www.celemony.com

PitchScope http://www.creativedetectors.com/

Sibelius AudioScore http://www.sibelius.com/products/audioscore/ultimate.html
Solo Explorer http://www.recognisoft.com/

Transcribe! http://www.seventhstring.com/xscribe/

WIDISOFT audio-to-MIDI http://www.widisoft.com/english/translate.html

VST plugin

121
Demo
Silvet Vamp plugin
% A4 M CaPEB» DI S E oo & x ) P A
@y w2 +3 Ma s
Color O white
Scale Auto-align 2| [Hz | =
Show © Play @ m (0
(") E—
Silvet download: https://code.soundsoftware.ac.uk/projects/silvet/files
Sonic Visualiser download: http://www.sonicvisualiser.org/download.html
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Challenges and
Future Directions

123

Challenges and Directions — Evaluation Measures (1)

Design musically meaningful evaluation measures
¢ Some notes are more musically important

_8 - = X >
Il e o Grfaf L s e s F o F ‘o
e e e e P e P
D) | > l_u —_— 3 6 —— \—hhl—l—iu
33 < P — g 3

6 - » e = r >

EREREL F Fa Fal- il b e e Ee e
b3 L S e e
2 b4 . o R . + T +—+ +—+ H A e
= S = I ERRET 0 3 6 3

e Some errors are more musically annoying

— Inharmonic errors > harmonic/octave errors

— Wrong notes outside the scale > wrong notes within the scale
¢ The annoyingness depends on the application

— For music re-synthesis: insertion errors > miss errors

— For music search: octave errors > semitone errors
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Challenges and Directions — Evaluation Measures (2)

Some ideas for designing musically meaningful measures
¢ Observation approach: Analyze how music teachers grade music
dictation exams
— Quantitative analysis of music teachers’ evaluation measures
— Well supported by music theory and music education practice
— Depends on the type of music

— Errors made by music students cannot represent errors made by
computers

e Experiment approach: Subjective listening tests on different types
of algorithmically generated errors

— Analyze correlations between the presence of errors and the listening
experience

— Full control and easy generation of different types of error
— Difficult to find enough qualified subjects

125

Challenges and Directions — Musical Knowledge (1)

Incorporating musical knowledge

e Most existing transcription approaches are data-driven (bottom-up)

— Caused many errors that are not musically meaningful, and hence may
be easily avoided by incorporating musical knowledge

¢ Musicians rely on musical knowledge to transcribe music
— Key signature, scale
— Harmonic progression, metrical structure
— Counterpoint and other composition rules
¢ Speech recognition successfully integrates acoustic model and

language model through HMM or deep neural networks, although
these models cannot be directly applied to AMT

— Music is polyphonic
— Music rhythm involves much longer temporal dependencies
— Music harmony arrangement involves rich music theory

126
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Challenges and Directions — Musical Knowledge (2)

Existing attempts in incorporating musical knowledge
Blackboard architecture [Martin96; Bello03]
— Use of competing “knowledge sources”

— No rigorous mathematical model

Bayesian networks [Kasino98; Davy06; Cemgil06]

— Rigorous mathematical models
— Computationally intensive

— Very simple musical knowledge (e.g., pitch range, pitch transition)

More recent approaches

127

Challenges and Directions — Musical Knowledge (3)

[Raczynski et al., 2013] Dynamic Bayesian Networks

Chord model: chords transition
Note model: linear combination
of the following sub-models:

— Harmonic: pitch on/off based on
underlying chord

— Duration: pitch on/off transition
— Voice: pitch jump
— Polyphony: pitch on/off based on
previous polyphony
— Neighbor: pitch on/off based on
the note directly below
All models first-order Markovian
3% F-measure improvement from
an NMF-based AMT approach

chords

notes

observ.
salience

Activation probability
01 02 03 04 05 06 07

g%

Audio frames (93ms hop)

/’»}\M “/M;

A

T T
R m2 M2 m3 M3 P4 T P5 m6 M6 m7 M7
0 1 ] 3 El 5 6 7 8 9 10 1"

Interval from root
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Challenges and Directions — Musical Knowledge (4)

[Temperley, 2009] Generative models for deep and interdependent
musical structures

Meter, beats at metrical
different levels structure

Note tends to / | ic struct Harmony tends to
change on beats; J— harmonic structure change on beats;

note pitch jump; structure chord progression
streams begin and
end
NOTE
PATTERN

rhythmic pattern

pitch pattern

e Parameters are hand coded instead of learned from symbolic data

e Preliminary results (unpublished) show 3% improvement on note-level F-
measure, using the acoustic model in [Duan & Temperley, 2014]

129

Challenges and Directions — Musical Knowledge (5)

Model temporal dependencies with RNN-RBM

e 1) Product of experts [Boulanger-Lewandowskil2]  Combinations of the
best pitch candidates
estimated by the

C = —log Po(v®) — alog P, (vt A*)) acoustic model

~
Acoustic model by Proposed
RBM [Nam11] symbolic model
¢ 2) Joint optimization by I/0 RNN-RBM [Boulanger-Lewandowski13]
J AT |
7 Ny, § Tests on mostly synthetic
%  piano data
T + Method 1 achieves 1%-
10% frame-level
B0 Z transcription accuracy
“'.;‘1‘ 1‘ e improvement
RBM output features | D) | | E] | |‘,“-“'| » Method 2 achieves 4%-

using [Nam11] - 30% improvement
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Challenges and Directions — Musical Knowledge (6)

Model music language using RNN
e PLCA + RNN-NADE [Sigtia et al., 2014]

— RNN-NADE is a variant of RNN-RBM, taking a pitch activity vector
sequence as input

— Impose RNN as a Dirichlet prior for pitch activations into the PLCA
framework

— 3% frame-level transcription accuracy improvement on real data
e RNN + RNN [Sigtia et al., 2015]

RNN-NADE trained
from symbolic data

DNN or
RNN or
DNN+RNN
trained from

acoustic data @ @ @ o
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Challenges and Directions — User Assisted Approach (1)

User-assisted (semi-automatic) music transcription

e What information is helpful and is easy to provide by users?
— Key, tempo, time signature, structural information, timbre

¢ How to make the interaction easy for users to annotate?

— Typing information

Editing through graphical user interface

Singing/humming melodic lines

Playing on a keyboard

¢ How to reduce the amount of information that users need to
provide?
— The system needs to learn from user annotations quickly and actively
— An iterative approach is preferred

132
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Challenges and Directions — User Assisted Approach (2)

Existing approaches

e Ask users to provide instrument labels for some notes to learn
instrument models using shift-invariant NMF [Kirchhoff et al., 2012]

¢ Ask users to provide transcription of some segments of the piece to
learn a PLCA-based model [Scatolini et al., 2015]

¢ In source separation

— Singing voice / accompaniment separation through humming [Mysore
& Smaragdis, 2009]

— Music source separation with user-selected FO track [Durrieu &
Thiran, 2012]

— Interactive Source Separation Editor with user selected spectrogram
regions PLCA [Bryan et al., 2014]

133

Challenges and Directions — Non-Western (1)

Automatic transcription of non-Western/non-Eurogenetic/traditional music

e The vast majority of AMT research assumes 12 TET

¢ Another assumption: monophony/polyphony (whereas in several cultures
music is heterophonic)

¢ Research on transcribing non-Western/traditional music:

[Gomez13]: Automatic transcription of (a capella singing) flamenco recordings

[Bozkurt08; Benetos15]: Pitch analysis and transcription for Turkish makam music

— [Srinivasamurthy14]: Transcribing percussion patterns in Chinese opera

[Kelleher05]: Transcription & ornament detection for Irish fiddle

bty s Tl e o

(a) Melody as notated
p)
Gl e e e
(b) Transcription of oud performance 134
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Challenges and Directions — Non-Western (2)

Automatic transcription of non-Western/non-Eurogenetic/traditional music

e DML system: 20-cent time-pitch representations for 60k recordings of the
British Library Sound Archive (http://dml.city.ac.uk/vis/)
e Open problems:
— Datal (recordings & annotations)
— Methodology: culture-specific vs. general-purpose systems
— Prescriptive vs descriptive notation
— Engagement from the ethnomusicology community (changing: FMA, AAWM...)

135

Conclusions

136
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Conclusions (1)

State of the field ;
Continues to attract attention in the ‘ ‘

MIR and music signal processing

research communities + emerging R SRS =

topic for music language modelling » — =

Performance (objective + perceptual) =

has increased over the last decade Alronr_rastonr_rasty
o

Instrument- and style-specific AMT
systems have sufficiently good
performance for end-user
applications

AMT-derived features are useful for
computing high-level music

descriptors
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Conclusions (2)

State of the field (cont’d)

As the scope of AMT research ’ | ' l II ». ' ll l

continues to grow — increasing ] =
number of open problems & sub- S

problems! == == g =
P —
Agreement that a successful AMT 5
fs - .
§ystem c§nnot rely only on o G str torler oo le
information from the acoustic signal. | - s

Input needed from:

—  Music acoustics

—  Music theory/language
— Music perception

Unified methodology
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Thanks for listening!
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